Path planning of patrol robot based on modified grey wolf optimizer

运动规划 粒子群优化 趋同(经济学) 数学优化 路径(计算) 稳健性(进化) 轮盘赌 计算机科学 航程(航空) 算法 人口 适应度函数 机器人 工程类 遗传算法 数学 人工智能 生物化学 化学 几何学 人口学 航空航天工程 社会学 经济 基因 程序设计语言 经济增长
作者
Qian Zhang,Xucheng Ning,Yingying Li,Lei Pan,Rui Gao,Jing Wang
出处
期刊:Robotica [Cambridge University Press]
卷期号:41 (7): 1947-1975 被引量:2
标识
DOI:10.1017/s0263574723000231
摘要

Abstract The grey wolf optimizer (GWO) as a new intelligent optimization algorithm has been successfully applied in many fields because of its simple structure, few adjustment parameters and easy implementation. This paper mainly aims at the defects of GWO in path planning application, such as easily falling into local optimization, poor convergence and poor accuracy, and turn point grey wolf optimization (TPGWO) algorithm is proposed. First, the idea of cross-mutation and roulette is used to increase the initial population of GWO and improve the search range. At the same time, the convergence factor function is improved to become a nonlinear update. In the early stage, the search range is expanded, and in the later stage, the convergence speed is increased, while the parameters in the convergence factor function can be adjusted according to the number of obstacles and the map area to change the turning point of the function to improve the convergence speed and accuracy of the algorithm. The turning times and turning angles of the obtained path are added to the fitness function as penalty values to improve the path accuracy. The optimization test is carried out through 16 test functions, and the test results prove the convergence and robustness of TPGWO algorithm. Finally, the TPGWO algorithm is applied to the path planning of patrol robot for simulation experiments. Compared with the GWO algorithm and Particle Swarm Optimization, the simulation results show that the TPGWO algorithm has better convergence, stability and accuracy in the path planning of patrol robot.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助ecrrry采纳,获得10
刚刚
刚刚
coco完成签到 ,获得积分10
刚刚
浪客完成签到 ,获得积分10
1秒前
苏蔚完成签到,获得积分10
1秒前
与山发布了新的文献求助10
1秒前
1秒前
bbanshan完成签到,获得积分10
1秒前
2秒前
菜菜发布了新的文献求助10
2秒前
小豆豆严发布了新的文献求助10
2秒前
万能图书馆应助暗生崎乐采纳,获得10
3秒前
orixero应助wsmwsm采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
cookie完成签到,获得积分10
5秒前
kkkjjj完成签到,获得积分20
5秒前
永恒完成签到,获得积分10
5秒前
柑橘乌云发布了新的文献求助10
5秒前
plusweng完成签到 ,获得积分10
6秒前
英姑应助刘玄德采纳,获得10
7秒前
娜娜发布了新的文献求助10
7秒前
hxm发布了新的文献求助10
7秒前
7秒前
含蓄的含羞草完成签到,获得积分10
7秒前
wzhnb完成签到,获得积分20
7秒前
打打应助海若有因采纳,获得10
8秒前
vict发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751700
求助须知:如何正确求助?哪些是违规求助? 5469951
关于积分的说明 15371019
捐赠科研通 4890794
什么是DOI,文献DOI怎么找? 2629946
邀请新用户注册赠送积分活动 1578155
关于科研通互助平台的介绍 1534256