iATMEcell: identification of abnormal tumor microenvironment cells to predict the clinical outcomes in cancer based on cell–cell crosstalk network

肿瘤微环境 串扰 癌细胞 免疫系统 生物 膀胱癌 计算生物学 转录组 细胞 免疫疗法 电池类型 癌症研究 癌症 基因 免疫学 基因表达 遗传学 物理 光学
作者
Yuqi Sheng,Jiashuo Wu,Xiangmei Li,Jiayue Qiu,Ji Li,Qinyu Ge,Liang Cheng,Junwei Han
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:2
标识
DOI:10.1093/bib/bbad074
摘要

Interactions between Tumor microenvironment (TME) cells shape the unique growth environment, sustaining tumor growth and causing the immune escape of tumor cells. Nonetheless, no studies have reported a systematic analysis of cellular interactions in the identification of cancer-related TME cells. Here, we proposed a novel network-based computational method, named as iATMEcell, to identify the abnormal TME cells associated with the biological outcome of interest based on a cell-cell crosstalk network. In the method, iATMEcell first manually collected TME cell types from multiple published studies and obtained their corresponding gene signatures. Then, a weighted cell-cell crosstalk network was constructed in the context of a specific cancer bulk tissue transcriptome data, where the weight between cells reflects both their biological function similarity and the transcriptional dysregulated activities of gene signatures shared by them. Finally, it used a network propagation algorithm to identify significantly dysregulated TME cells. Using the cancer genome atlas (TCGA) Bladder Urothelial Carcinoma training set and two independent validation sets, we illustrated that iATMEcell could identify significant abnormal cells associated with patient survival and immunotherapy response. iATMEcell was further applied to a pan-cancer analysis, which revealed that four common abnormal immune cells play important roles in the patient prognosis across multiple cancer types. Collectively, we demonstrated that iATMEcell could identify potentially abnormal TME cells based on a cell-cell crosstalk network, which provided a new insight into understanding the effect of TME cells in cancer. iATMEcell is developed as an R package, which is freely available on GitHub (https://github.com/hanjunwei-lab/iATMEcell).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助wergou采纳,获得10
刚刚
刚刚
科研通AI6应助王旭采纳,获得10
刚刚
1秒前
1秒前
yk123发布了新的文献求助10
2秒前
hiter发布了新的文献求助30
2秒前
2秒前
2秒前
3秒前
3秒前
Amostre88完成签到,获得积分10
4秒前
bonnie发布了新的文献求助10
4秒前
李可发布了新的文献求助10
4秒前
乾明少侠完成签到 ,获得积分0
5秒前
CipherSage应助wt采纳,获得10
5秒前
may完成签到,获得积分10
5秒前
6秒前
何hyy发布了新的文献求助10
7秒前
DavidShaw发布了新的文献求助10
8秒前
jzpPLA完成签到,获得积分10
8秒前
8秒前
共享精神应助rosyw采纳,获得10
8秒前
8秒前
儒雅熊猫完成签到,获得积分10
9秒前
耘清发布了新的文献求助10
9秒前
10秒前
10秒前
yk123完成签到,获得积分10
11秒前
CipherSage应助Xie采纳,获得10
11秒前
杨蒙博发布了新的文献求助10
12秒前
Fishie发布了新的文献求助10
13秒前
李可完成签到,获得积分10
13秒前
ballball233完成签到 ,获得积分10
14秒前
14秒前
liuliu完成签到,获得积分10
14秒前
15秒前
zhangDL完成签到,获得积分10
16秒前
爆米花应助CoNor采纳,获得10
16秒前
003完成签到,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920