已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

iATMEcell: identification of abnormal tumor microenvironment cells to predict the clinical outcomes in cancer based on cell–cell crosstalk network

肿瘤微环境 串扰 癌细胞 免疫系统 生物 膀胱癌 计算生物学 转录组 细胞 免疫疗法 电池类型 癌症研究 癌症 基因 免疫学 基因表达 遗传学 物理 光学
作者
Yuqi Sheng,Jiashuo Wu,Xiangmei Li,Jiayue Qiu,Ji Li,Qinyu Ge,Liang Cheng,Junwei Han
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:2
标识
DOI:10.1093/bib/bbad074
摘要

Interactions between Tumor microenvironment (TME) cells shape the unique growth environment, sustaining tumor growth and causing the immune escape of tumor cells. Nonetheless, no studies have reported a systematic analysis of cellular interactions in the identification of cancer-related TME cells. Here, we proposed a novel network-based computational method, named as iATMEcell, to identify the abnormal TME cells associated with the biological outcome of interest based on a cell-cell crosstalk network. In the method, iATMEcell first manually collected TME cell types from multiple published studies and obtained their corresponding gene signatures. Then, a weighted cell-cell crosstalk network was constructed in the context of a specific cancer bulk tissue transcriptome data, where the weight between cells reflects both their biological function similarity and the transcriptional dysregulated activities of gene signatures shared by them. Finally, it used a network propagation algorithm to identify significantly dysregulated TME cells. Using the cancer genome atlas (TCGA) Bladder Urothelial Carcinoma training set and two independent validation sets, we illustrated that iATMEcell could identify significant abnormal cells associated with patient survival and immunotherapy response. iATMEcell was further applied to a pan-cancer analysis, which revealed that four common abnormal immune cells play important roles in the patient prognosis across multiple cancer types. Collectively, we demonstrated that iATMEcell could identify potentially abnormal TME cells based on a cell-cell crosstalk network, which provided a new insight into understanding the effect of TME cells in cancer. iATMEcell is developed as an R package, which is freely available on GitHub (https://github.com/hanjunwei-lab/iATMEcell).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
仓鼠球发布了新的文献求助30
2秒前
赵雨霏完成签到 ,获得积分10
13秒前
生动丑应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
悄悄完成签到 ,获得积分10
16秒前
程子完成签到,获得积分10
16秒前
John完成签到 ,获得积分10
17秒前
18秒前
mmyhn驳回了田様应助
25秒前
25秒前
骆十八完成签到,获得积分10
26秒前
27秒前
能干的雨完成签到 ,获得积分10
29秒前
WZ发布了新的文献求助10
30秒前
天天天晴完成签到 ,获得积分10
35秒前
杨无敌完成签到 ,获得积分10
36秒前
38秒前
WZ完成签到,获得积分10
39秒前
123456发布了新的文献求助10
41秒前
英俊的小恐龙完成签到 ,获得积分10
43秒前
乐枳完成签到 ,获得积分10
45秒前
高源伯完成签到 ,获得积分10
50秒前
58秒前
灵巧的以亦完成签到 ,获得积分10
59秒前
王英俊完成签到,获得积分10
1分钟前
1分钟前
domingo发布了新的文献求助10
1分钟前
寒冷哈密瓜完成签到 ,获得积分0
1分钟前
AAA房地产小王完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
mmyhn完成签到,获得积分10
1分钟前
wanci应助domingo采纳,获得20
1分钟前
1分钟前
qqweisiweiqq完成签到,获得积分10
1分钟前
张萌完成签到 ,获得积分10
1分钟前
NexusExplorer应助123456采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990008
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256121
捐赠科研通 3270913
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216