亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iATMEcell: identification of abnormal tumor microenvironment cells to predict the clinical outcomes in cancer based on cell–cell crosstalk network

肿瘤微环境 串扰 癌细胞 免疫系统 生物 膀胱癌 计算生物学 转录组 细胞 免疫疗法 电池类型 癌症研究 癌症 基因 免疫学 基因表达 遗传学 物理 光学
作者
Yuqi Sheng,Jiashuo Wu,Xiangmei Li,Jiayue Qiu,Ji Li,Qinyu Ge,Liang Cheng,Junwei Han
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:2
标识
DOI:10.1093/bib/bbad074
摘要

Interactions between Tumor microenvironment (TME) cells shape the unique growth environment, sustaining tumor growth and causing the immune escape of tumor cells. Nonetheless, no studies have reported a systematic analysis of cellular interactions in the identification of cancer-related TME cells. Here, we proposed a novel network-based computational method, named as iATMEcell, to identify the abnormal TME cells associated with the biological outcome of interest based on a cell-cell crosstalk network. In the method, iATMEcell first manually collected TME cell types from multiple published studies and obtained their corresponding gene signatures. Then, a weighted cell-cell crosstalk network was constructed in the context of a specific cancer bulk tissue transcriptome data, where the weight between cells reflects both their biological function similarity and the transcriptional dysregulated activities of gene signatures shared by them. Finally, it used a network propagation algorithm to identify significantly dysregulated TME cells. Using the cancer genome atlas (TCGA) Bladder Urothelial Carcinoma training set and two independent validation sets, we illustrated that iATMEcell could identify significant abnormal cells associated with patient survival and immunotherapy response. iATMEcell was further applied to a pan-cancer analysis, which revealed that four common abnormal immune cells play important roles in the patient prognosis across multiple cancer types. Collectively, we demonstrated that iATMEcell could identify potentially abnormal TME cells based on a cell-cell crosstalk network, which provided a new insight into understanding the effect of TME cells in cancer. iATMEcell is developed as an R package, which is freely available on GitHub (https://github.com/hanjunwei-lab/iATMEcell).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桦奕兮完成签到 ,获得积分10
4秒前
Akim应助Borhan采纳,获得10
8秒前
26秒前
jjjjj发布了新的文献求助10
30秒前
Liiiiiiiiii发布了新的文献求助10
31秒前
Eva完成签到 ,获得积分10
40秒前
上官若男应助Liiiiiiiiii采纳,获得10
43秒前
Liufgui应助jjjjj采纳,获得10
46秒前
47秒前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
核桃发布了新的文献求助30
1分钟前
田様应助最最最采纳,获得10
1分钟前
1分钟前
1分钟前
不懂白完成签到 ,获得积分10
2分钟前
2分钟前
Borhan发布了新的文献求助10
2分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
3分钟前
rumengren完成签到 ,获得积分10
3分钟前
3分钟前
嘉嘉完成签到 ,获得积分10
4分钟前
重要元灵完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
完美世界应助科研通管家采纳,获得10
5分钟前
俏皮元珊完成签到 ,获得积分10
5分钟前
21完成签到 ,获得积分10
5分钟前
5分钟前
自然芷文发布了新的文献求助10
5分钟前
112345完成签到 ,获得积分10
6分钟前
自然芷文完成签到,获得积分10
6分钟前
6分钟前
迷人问兰发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得19
7分钟前
sjyu1985完成签到 ,获得积分10
7分钟前
闻巷雨完成签到 ,获得积分10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990049
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256369
捐赠科研通 3270998
什么是DOI,文献DOI怎么找? 1805166
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228