iATMEcell: identification of abnormal tumor microenvironment cells to predict the clinical outcomes in cancer based on cell–cell crosstalk network

肿瘤微环境 串扰 癌细胞 免疫系统 生物 膀胱癌 计算生物学 转录组 细胞 免疫疗法 电池类型 癌症研究 癌症 基因 免疫学 基因表达 遗传学 物理 光学
作者
Yuqi Sheng,Jiashuo Wu,Xiangmei Li,Jiayue Qiu,Li Ji,Qinyu Ge,Cheng Liang,Junwei Han
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2)
标识
DOI:10.1093/bib/bbad074
摘要

Interactions between Tumor microenvironment (TME) cells shape the unique growth environment, sustaining tumor growth and causing the immune escape of tumor cells. Nonetheless, no studies have reported a systematic analysis of cellular interactions in the identification of cancer-related TME cells. Here, we proposed a novel network-based computational method, named as iATMEcell, to identify the abnormal TME cells associated with the biological outcome of interest based on a cell-cell crosstalk network. In the method, iATMEcell first manually collected TME cell types from multiple published studies and obtained their corresponding gene signatures. Then, a weighted cell-cell crosstalk network was constructed in the context of a specific cancer bulk tissue transcriptome data, where the weight between cells reflects both their biological function similarity and the transcriptional dysregulated activities of gene signatures shared by them. Finally, it used a network propagation algorithm to identify significantly dysregulated TME cells. Using the cancer genome atlas (TCGA) Bladder Urothelial Carcinoma training set and two independent validation sets, we illustrated that iATMEcell could identify significant abnormal cells associated with patient survival and immunotherapy response. iATMEcell was further applied to a pan-cancer analysis, which revealed that four common abnormal immune cells play important roles in the patient prognosis across multiple cancer types. Collectively, we demonstrated that iATMEcell could identify potentially abnormal TME cells based on a cell-cell crosstalk network, which provided a new insight into understanding the effect of TME cells in cancer. iATMEcell is developed as an R package, which is freely available on GitHub (https://github.com/hanjunwei-lab/iATMEcell).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小胡发SCI完成签到 ,获得积分10
2秒前
Aqua完成签到,获得积分10
3秒前
香蕉觅云应助张腾腾采纳,获得10
4秒前
5秒前
wt完成签到,获得积分20
6秒前
暮辞完成签到,获得积分10
6秒前
ccciii发布了新的文献求助10
6秒前
Iris完成签到 ,获得积分10
6秒前
7秒前
8秒前
暮辞发布了新的文献求助10
9秒前
9秒前
Carol完成签到,获得积分10
10秒前
lzl完成签到,获得积分10
10秒前
杨耑耑发布了新的文献求助30
13秒前
13秒前
买菜市民熊先生完成签到,获得积分10
14秒前
浮生发布了新的文献求助10
14秒前
14秒前
风中的青完成签到,获得积分10
15秒前
科研通AI2S应助口香糖采纳,获得10
15秒前
15秒前
17秒前
19秒前
科研通AI2S应助ccciii采纳,获得10
19秒前
Rencal完成签到 ,获得积分10
19秒前
研友_X89o6n完成签到,获得积分10
20秒前
雪山飞龙发布了新的文献求助10
21秒前
小二郎应助之雄采纳,获得10
23秒前
cc完成签到 ,获得积分10
24秒前
软萌甜心小可爱完成签到,获得积分10
24秒前
深情安青应助太叔夜南采纳,获得10
24秒前
赘婿应助奥里给采纳,获得10
25秒前
SASA完成签到,获得积分10
28秒前
Samar完成签到 ,获得积分10
28秒前
29秒前
29秒前
我爱螺蛳粉完成签到 ,获得积分10
30秒前
一只桃完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148036
求助须知:如何正确求助?哪些是违规求助? 2799034
关于积分的说明 7833337
捐赠科研通 2456217
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628077
版权声明 601620