Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis

计算机科学 动态贝叶斯网络 数据挖掘 神经影像学 贝叶斯网络 贝叶斯概率 组学 生命银行 机器学习 人工智能 生物学数据 阿尔茨海默病神经影像学倡议 生物信息学 疾病 医学 阿尔茨海默病 生物 精神科 病理 神经科学
作者
Jingxuan Bao,Changgee Chang,Qiyiwen Zhang,Andrew J Saykin,Li Shen,Qi Long
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2)
标识
DOI:10.1093/bib/bbad073
摘要

Abstract Motivation With the rapid development of modern technologies, massive data are available for the systematic study of Alzheimer’s disease (AD). Though many existing AD studies mainly focus on single-modality omics data, multi-omics datasets can provide a more comprehensive understanding of AD. To bridge this gap, we proposed a novel structural Bayesian factor analysis framework (SBFA) to extract the information shared by multi-omics data through the aggregation of genotyping data, gene expression data, neuroimaging phenotypes and prior biological network knowledge. Our approach can extract common information shared by different modalities and encourage biologically related features to be selected, guiding future AD research in a biologically meaningful way. Method Our SBFA model decomposes the mean parameters of the data into a sparse factor loading matrix and a factor matrix, where the factor matrix represents the common information extracted from multi-omics and imaging data. Our framework is designed to incorporate prior biological network information. Our simulation study demonstrated that our proposed SBFA framework could achieve the best performance compared with the other state-of-the-art factor-analysis-based integrative analysis methods. Results We apply our proposed SBFA model together with several state-of-the-art factor analysis models to extract the latent common information from genotyping, gene expression and brain imaging data simultaneously from the ADNI biobank database. The latent information is then used to predict the functional activities questionnaire score, an important measurement for diagnosis of AD quantifying subjects’ abilities in daily life. Our SBFA model shows the best prediction performance compared with the other factor analysis models. Availability Code are publicly available at https://github.com/JingxuanBao/SBFA. Contact qlong@upenn.edu
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
哄不好的南完成签到,获得积分10
1秒前
makus完成签到,获得积分10
1秒前
西西歪完成签到,获得积分10
3秒前
3秒前
深情安青应助BONBON采纳,获得10
3秒前
小马完成签到,获得积分10
4秒前
4秒前
细腻沅发布了新的文献求助10
6秒前
火羽白然完成签到 ,获得积分10
6秒前
冰西瓜完成签到 ,获得积分10
7秒前
季忆发布了新的文献求助10
7秒前
7秒前
cc发布了新的文献求助10
8秒前
Hello应助糊涂的小伙采纳,获得10
8秒前
甜甜的冷霜完成签到,获得积分10
8秒前
hkxfg发布了新的文献求助10
9秒前
谭谨川完成签到,获得积分10
9秒前
李爱国应助云中渊采纳,获得10
10秒前
10秒前
LT发布了新的文献求助10
11秒前
11秒前
高兴藏花发布了新的文献求助10
11秒前
13秒前
Allen完成签到,获得积分10
14秒前
14秒前
楪i完成签到,获得积分10
14秒前
值得完成签到,获得积分10
16秒前
16秒前
远山完成签到,获得积分10
17秒前
星星发布了新的文献求助10
17秒前
nanhe698发布了新的文献求助20
17秒前
阳光无声完成签到,获得积分10
17秒前
金色年华发布了新的文献求助10
17秒前
shatang完成签到,获得积分10
18秒前
19秒前
Owen应助一天八杯水采纳,获得10
19秒前
所所应助静静子采纳,获得10
20秒前
所所应助jy采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808