Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis

计算机科学 动态贝叶斯网络 数据挖掘 神经影像学 贝叶斯网络 贝叶斯概率 组学 生命银行 机器学习 人工智能 生物学数据 阿尔茨海默病神经影像学倡议 生物信息学 疾病 医学 阿尔茨海默病 生物 精神科 病理 神经科学
作者
Jingxuan Bao,Changgee Chang,Qiyiwen Zhang,Andrew J Saykin,Li Shen,Qi Long
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2)
标识
DOI:10.1093/bib/bbad073
摘要

Abstract Motivation With the rapid development of modern technologies, massive data are available for the systematic study of Alzheimer’s disease (AD). Though many existing AD studies mainly focus on single-modality omics data, multi-omics datasets can provide a more comprehensive understanding of AD. To bridge this gap, we proposed a novel structural Bayesian factor analysis framework (SBFA) to extract the information shared by multi-omics data through the aggregation of genotyping data, gene expression data, neuroimaging phenotypes and prior biological network knowledge. Our approach can extract common information shared by different modalities and encourage biologically related features to be selected, guiding future AD research in a biologically meaningful way. Method Our SBFA model decomposes the mean parameters of the data into a sparse factor loading matrix and a factor matrix, where the factor matrix represents the common information extracted from multi-omics and imaging data. Our framework is designed to incorporate prior biological network information. Our simulation study demonstrated that our proposed SBFA framework could achieve the best performance compared with the other state-of-the-art factor-analysis-based integrative analysis methods. Results We apply our proposed SBFA model together with several state-of-the-art factor analysis models to extract the latent common information from genotyping, gene expression and brain imaging data simultaneously from the ADNI biobank database. The latent information is then used to predict the functional activities questionnaire score, an important measurement for diagnosis of AD quantifying subjects’ abilities in daily life. Our SBFA model shows the best prediction performance compared with the other factor analysis models. Availability Code are publicly available at https://github.com/JingxuanBao/SBFA. Contact qlong@upenn.edu
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
blablawindy发布了新的文献求助10
3秒前
wu8577应助熬夜拜拜采纳,获得10
3秒前
3秒前
pipi发布了新的文献求助10
3秒前
窝窝完成签到 ,获得积分10
5秒前
score17发布了新的文献求助10
5秒前
www发布了新的文献求助10
5秒前
高兴白莲发布了新的文献求助10
6秒前
6秒前
liujian完成签到,获得积分10
6秒前
隐形曼青应助淡淡夕阳采纳,获得10
7秒前
7秒前
jkdzp发布了新的文献求助10
8秒前
Mountain_Y发布了新的文献求助30
8秒前
9秒前
9秒前
linkman发布了新的文献求助10
12秒前
丘比特应助嘴巴张大一点采纳,获得10
13秒前
橙子发布了新的文献求助10
14秒前
nan发布了新的文献求助10
15秒前
15秒前
15秒前
IvanMcRae应助牛牛眉目采纳,获得10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
阿景完成签到,获得积分10
18秒前
Hygge发布了新的文献求助10
18秒前
Mountain_Y完成签到,获得积分10
19秒前
万能图书馆应助栀雨味采纳,获得10
19秒前
山有扶苏发布了新的文献求助30
21秒前
zbhshihr发布了新的文献求助10
21秒前
李爱国应助高兴白莲采纳,获得10
27秒前
wanci应助高兴白莲采纳,获得10
28秒前
Akim应助高兴白莲采纳,获得10
28秒前
赘婿应助高兴白莲采纳,获得10
28秒前
28秒前
共享精神应助高兴白莲采纳,获得10
28秒前
山有扶苏完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105