Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis

计算机科学 动态贝叶斯网络 数据挖掘 神经影像学 贝叶斯网络 贝叶斯概率 组学 生命银行 机器学习 人工智能 生物学数据 阿尔茨海默病神经影像学倡议 生物信息学 疾病 医学 阿尔茨海默病 生物 精神科 病理 神经科学
作者
Jingxuan Bao,Changgee Chang,Qiyiwen Zhang,Andrew J Saykin,Li Shen,Qi Long
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2)
标识
DOI:10.1093/bib/bbad073
摘要

Abstract Motivation With the rapid development of modern technologies, massive data are available for the systematic study of Alzheimer’s disease (AD). Though many existing AD studies mainly focus on single-modality omics data, multi-omics datasets can provide a more comprehensive understanding of AD. To bridge this gap, we proposed a novel structural Bayesian factor analysis framework (SBFA) to extract the information shared by multi-omics data through the aggregation of genotyping data, gene expression data, neuroimaging phenotypes and prior biological network knowledge. Our approach can extract common information shared by different modalities and encourage biologically related features to be selected, guiding future AD research in a biologically meaningful way. Method Our SBFA model decomposes the mean parameters of the data into a sparse factor loading matrix and a factor matrix, where the factor matrix represents the common information extracted from multi-omics and imaging data. Our framework is designed to incorporate prior biological network information. Our simulation study demonstrated that our proposed SBFA framework could achieve the best performance compared with the other state-of-the-art factor-analysis-based integrative analysis methods. Results We apply our proposed SBFA model together with several state-of-the-art factor analysis models to extract the latent common information from genotyping, gene expression and brain imaging data simultaneously from the ADNI biobank database. The latent information is then used to predict the functional activities questionnaire score, an important measurement for diagnosis of AD quantifying subjects’ abilities in daily life. Our SBFA model shows the best prediction performance compared with the other factor analysis models. Availability Code are publicly available at https://github.com/JingxuanBao/SBFA. Contact qlong@upenn.edu
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小鱼完成签到,获得积分10
1秒前
1秒前
1秒前
星宇完成签到 ,获得积分10
1秒前
酷波er应助星星采纳,获得10
2秒前
黑桃完成签到,获得积分10
2秒前
不够萌发布了新的文献求助10
3秒前
fanfan发布了新的文献求助10
3秒前
tannie完成签到 ,获得积分10
3秒前
3秒前
研友_Z1x9ln发布了新的文献求助10
3秒前
3秒前
虚心的泽洋完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
阻塞阀发布了新的文献求助10
6秒前
6秒前
onedollar发布了新的文献求助10
6秒前
toxin发布了新的文献求助10
6秒前
SXYYY完成签到,获得积分10
7秒前
汉堡包应助JK采纳,获得10
7秒前
娇气的寒香完成签到,获得积分10
7秒前
易义德发布了新的文献求助30
8秒前
8秒前
爱静静应助虚心的泽洋采纳,获得10
8秒前
库库完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
怡然铃铛发布了新的文献求助10
10秒前
10秒前
无语的傲云完成签到,获得积分10
11秒前
可爱的函函应助我的学习采纳,获得10
11秒前
了又柳发布了新的文献求助10
12秒前
13秒前
153495159应助搞份炸鸡778采纳,获得20
13秒前
依子陌发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152350
求助须知:如何正确求助?哪些是违规求助? 2803575
关于积分的说明 7854759
捐赠科研通 2461234
什么是DOI,文献DOI怎么找? 1310176
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765