Dynamic class-imbalanced financial distress prediction based on case-based reasoning integrated with time weighting and resampling

可解释性 重采样 加权 计算机科学 人工智能 机器学习 班级(哲学) 概念漂移 数据挖掘 人工神经网络 支持向量机 医学 数据流挖掘 放射科
作者
Jun Sun,Menghong Sun,Ming Zhao,Yingying Du
出处
期刊:Journal of Credit Risk [Infopro Digital]
标识
DOI:10.21314/jcr.2022.006
摘要

Existing dynamic class-imbalanced financial distress prediction (FDP) models based on artificial intelligence, such as support vector machines or neural networks, are difficult to understand. Case-based reasoning (CBR) is an artificial intelligence method that is easy for users to understand, but traditional FDP models based on CBR lack mechanisms for treating concept drift and class imbalance. This study explores the construction of a dynamic class-imbalanced CBR FDP model, which consists of four modules (dynamic updates of the case base, class balancing of the case base by resampling, the time weighting of cases and CBR for FDP). It treats financial distress concept drift by dynamically updating the case base and via a time-weighting mechanism, and solves the class imbalance problem by resampling. Empirical experiments based on real-world data from Chinese listed companies show that the proposed dynamic class-imbalanced CBR FDP model outperforms both static and dynamic CBR FDP models without resampling or time weighting. Therefore, the dynamic class-imbalanced CBR FDP model not only gives a satisfying performance by effectively treating the problems of both financial distress concept drift and class imbalance but also has good interpretability in real-world applications, providing corporate managers and other stakeholders with a new risk management tool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Science发布了新的文献求助10
1秒前
曦和完成签到,获得积分10
1秒前
1秒前
stella发布了新的文献求助10
1秒前
顺心的大碗完成签到,获得积分10
2秒前
wanli发布了新的文献求助10
3秒前
cRAMing完成签到,获得积分10
3秒前
儒雅的不愁完成签到 ,获得积分10
3秒前
霸气连碧发布了新的文献求助10
4秒前
4秒前
4秒前
星辰大海应助莹仔采纳,获得10
4秒前
xing发布了新的文献求助10
5秒前
宇文听南发布了新的文献求助10
5秒前
6秒前
7秒前
隐形的映菱完成签到,获得积分10
7秒前
thirteen完成签到 ,获得积分10
7秒前
8秒前
迷路的翠安关注了科研通微信公众号
8秒前
9秒前
钱多多完成签到,获得积分10
9秒前
10秒前
栗子完成签到,获得积分10
11秒前
Sunshine发布了新的文献求助10
11秒前
11秒前
11秒前
Lucas应助lmcs采纳,获得10
11秒前
11秒前
饱满寻冬完成签到 ,获得积分20
12秒前
钱多多发布了新的文献求助10
13秒前
13秒前
陈陈发布了新的文献求助10
14秒前
zhenliu完成签到 ,获得积分10
15秒前
半斤完成签到,获得积分10
15秒前
16秒前
16秒前
36456657应助皮老师采纳,获得20
16秒前
delia关注了科研通微信公众号
16秒前
雨城发布了新的文献求助10
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227601
求助须知:如何正确求助?哪些是违规求助? 2875589
关于积分的说明 8191848
捐赠科研通 2542829
什么是DOI,文献DOI怎么找? 1373128
科研通“疑难数据库(出版商)”最低求助积分说明 646685
邀请新用户注册赠送积分活动 621178