亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Evaluation of Statistical and Machine-Learning Models for Queue-Length Estimation for Lane Closures in Freeway Work Zones

排队 结束语(心理学) 计算机科学 工作(物理) 估计 直线(几何图形) 模拟 数学 工程类 几何学 计算机网络 机械工程 系统工程 经济 市场经济
作者
Pronab Kumar Biswas,Sakib Mahmud Khan,Kalyan R. Piratla,Mashrur Chowdhury
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (5) 被引量:2
标识
DOI:10.1061/jcemd4.coeng-12648
摘要

Freeway maintenance and rehabilitation work usually require closing one or multiple lanes, interrupting traffic flows, and creating queues upstream of the work zone. Public agencies can use queue length as a criterion to determine the maximum duration of lane closures and necessary traffic diversions. Previous studies of estimating queue length due to work zone lane closures are data- and time-intensive. This study presents an efficient approach for estimating queue length estimation due to work zone lane closures by developing various statistical and machine-learning models. The inputs for these queue length estimation models were vehicle demand, lane closure duration, active work zone length, and heavy vehicle percentage. The extent of the queues caused by short-term work zones on freeways for 2-to-1 (one-lane closure on a two-lane freeway), 3-to-1 (one-lane closure on a three-lane freeway), and 3-to-2 (two-lane closure on a three-lane freeway) lane-closure configurations can be estimated with these models. The primary scientific contribution of this study is the applicability of the queue length estimation models in any freeway network with work zone configurations and geometric features such as those used for model development. This research evaluated the efficacy of both statistical and machine-learning models for estimating the queue length considering different work zone scenarios. The accuracy of the queue length estimation models was evaluated for a different network that the original models had not seen previously. Among the statistical models, the quantile regression model had the best accuracy based on mean absolute percentage error (MAPE) for the 2-to-1 lane-closure configuration (88%), and the multiple linear regression had the best accuracy for the 3-to-1 (76%) and 3-to-2 (72%) lane-closure configurations. Among the machine-learning models, the stacking regressor model had the best accuracy for 2-to-1 (95%), 3-to-1 (90%), and 3-to-2 (89%) lane-closure configurations. Based on the analysis, it was observed that machine-learning models performed better than the traditional statistical models in estimating queue lengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧念露发布了新的文献求助10
7秒前
xing完成签到 ,获得积分10
12秒前
伊萨卡完成签到 ,获得积分10
17秒前
make完成签到 ,获得积分10
22秒前
轻松初阳完成签到 ,获得积分10
27秒前
Hannah1117完成签到,获得积分10
29秒前
32秒前
虚心怜阳完成签到,获得积分10
35秒前
35秒前
36秒前
yuwen发布了新的文献求助10
37秒前
佐敦完成签到,获得积分10
39秒前
39秒前
虚心怜阳发布了新的文献求助10
40秒前
执着乐双完成签到,获得积分10
40秒前
41秒前
kk发布了新的文献求助30
44秒前
科研通AI5应助sk4ajd采纳,获得10
47秒前
王伟应助小巧念露采纳,获得10
48秒前
小米稀饭完成签到 ,获得积分10
52秒前
小冠军完成签到,获得积分10
57秒前
57秒前
59秒前
59秒前
59秒前
赘婿应助科研通管家采纳,获得10
59秒前
1分钟前
飞翔的发布了新的文献求助20
1分钟前
乐乐应助猪猪侠采纳,获得10
1分钟前
大模型应助小巧念露采纳,获得80
1分钟前
1分钟前
1111完成签到,获得积分10
1分钟前
半城微凉应助椒盐采纳,获得10
1分钟前
raemourn完成签到,获得积分10
1分钟前
1分钟前
study666发布了新的文献求助10
1分钟前
1111发布了新的文献求助10
1分钟前
Hannah1117发布了新的文献求助10
1分钟前
sk4ajd发布了新的文献求助10
1分钟前
raemourn发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968293
求助须知:如何正确求助?哪些是违规求助? 3513220
关于积分的说明 11166815
捐赠科研通 3248470
什么是DOI,文献DOI怎么找? 1794249
邀请新用户注册赠送积分活动 874956
科研通“疑难数据库(出版商)”最低求助积分说明 804629