Development and Evaluation of Statistical and Machine-Learning Models for Queue-Length Estimation for Lane Closures in Freeway Work Zones

排队 结束语(心理学) 计算机科学 工作(物理) 估计 直线(几何图形) 模拟 数学 工程类 几何学 计算机网络 市场经济 机械工程 经济 系统工程
作者
Pronab Kumar Biswas,Sakib Mahmud Khan,Kalyan R. Piratla,Mashrur Chowdhury
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (5) 被引量:2
标识
DOI:10.1061/jcemd4.coeng-12648
摘要

Freeway maintenance and rehabilitation work usually require closing one or multiple lanes, interrupting traffic flows, and creating queues upstream of the work zone. Public agencies can use queue length as a criterion to determine the maximum duration of lane closures and necessary traffic diversions. Previous studies of estimating queue length due to work zone lane closures are data- and time-intensive. This study presents an efficient approach for estimating queue length estimation due to work zone lane closures by developing various statistical and machine-learning models. The inputs for these queue length estimation models were vehicle demand, lane closure duration, active work zone length, and heavy vehicle percentage. The extent of the queues caused by short-term work zones on freeways for 2-to-1 (one-lane closure on a two-lane freeway), 3-to-1 (one-lane closure on a three-lane freeway), and 3-to-2 (two-lane closure on a three-lane freeway) lane-closure configurations can be estimated with these models. The primary scientific contribution of this study is the applicability of the queue length estimation models in any freeway network with work zone configurations and geometric features such as those used for model development. This research evaluated the efficacy of both statistical and machine-learning models for estimating the queue length considering different work zone scenarios. The accuracy of the queue length estimation models was evaluated for a different network that the original models had not seen previously. Among the statistical models, the quantile regression model had the best accuracy based on mean absolute percentage error (MAPE) for the 2-to-1 lane-closure configuration (88%), and the multiple linear regression had the best accuracy for the 3-to-1 (76%) and 3-to-2 (72%) lane-closure configurations. Among the machine-learning models, the stacking regressor model had the best accuracy for 2-to-1 (95%), 3-to-1 (90%), and 3-to-2 (89%) lane-closure configurations. Based on the analysis, it was observed that machine-learning models performed better than the traditional statistical models in estimating queue lengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
机智绝悟发布了新的文献求助10
3秒前
argb_pump完成签到,获得积分10
4秒前
满天星完成签到,获得积分10
4秒前
小六子发布了新的文献求助10
4秒前
yee完成签到,获得积分10
5秒前
5秒前
zjw完成签到,获得积分10
6秒前
阳宝是个小蜜蜂完成签到,获得积分10
6秒前
6秒前
选民很头疼完成签到 ,获得积分10
7秒前
8秒前
贺玖发布了新的文献求助10
10秒前
未来无限发布了新的文献求助10
10秒前
10秒前
yang完成签到,获得积分10
11秒前
calm发布了新的文献求助10
12秒前
12秒前
奋斗小医生完成签到,获得积分10
12秒前
12秒前
liuze完成签到,获得积分10
12秒前
nono发布了新的文献求助10
13秒前
Daphne发布了新的文献求助10
15秒前
15秒前
情怀应助愤怒的山兰采纳,获得10
15秒前
浊轶完成签到 ,获得积分10
16秒前
思源应助迷路的初柔采纳,获得10
16秒前
17秒前
月yue完成签到,获得积分10
18秒前
liuze发布了新的文献求助10
18秒前
18秒前
Xorgan发布了新的文献求助10
21秒前
魔幻的纸鹤完成签到,获得积分10
22秒前
qianqianwei发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
搞搞科研完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073745
求助须知:如何正确求助?哪些是违规求助? 4293839
关于积分的说明 13379559
捐赠科研通 4115216
什么是DOI,文献DOI怎么找? 2253490
邀请新用户注册赠送积分活动 1258246
关于科研通互助平台的介绍 1191140