Development and Evaluation of Statistical and Machine-Learning Models for Queue-Length Estimation for Lane Closures in Freeway Work Zones

排队 结束语(心理学) 计算机科学 工作(物理) 估计 直线(几何图形) 模拟 数学 工程类 几何学 计算机网络 市场经济 机械工程 经济 系统工程
作者
Pronab Kumar Biswas,Sakib Mahmud Khan,Kalyan R. Piratla,Mashrur Chowdhury
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (5) 被引量:2
标识
DOI:10.1061/jcemd4.coeng-12648
摘要

Freeway maintenance and rehabilitation work usually require closing one or multiple lanes, interrupting traffic flows, and creating queues upstream of the work zone. Public agencies can use queue length as a criterion to determine the maximum duration of lane closures and necessary traffic diversions. Previous studies of estimating queue length due to work zone lane closures are data- and time-intensive. This study presents an efficient approach for estimating queue length estimation due to work zone lane closures by developing various statistical and machine-learning models. The inputs for these queue length estimation models were vehicle demand, lane closure duration, active work zone length, and heavy vehicle percentage. The extent of the queues caused by short-term work zones on freeways for 2-to-1 (one-lane closure on a two-lane freeway), 3-to-1 (one-lane closure on a three-lane freeway), and 3-to-2 (two-lane closure on a three-lane freeway) lane-closure configurations can be estimated with these models. The primary scientific contribution of this study is the applicability of the queue length estimation models in any freeway network with work zone configurations and geometric features such as those used for model development. This research evaluated the efficacy of both statistical and machine-learning models for estimating the queue length considering different work zone scenarios. The accuracy of the queue length estimation models was evaluated for a different network that the original models had not seen previously. Among the statistical models, the quantile regression model had the best accuracy based on mean absolute percentage error (MAPE) for the 2-to-1 lane-closure configuration (88%), and the multiple linear regression had the best accuracy for the 3-to-1 (76%) and 3-to-2 (72%) lane-closure configurations. Among the machine-learning models, the stacking regressor model had the best accuracy for 2-to-1 (95%), 3-to-1 (90%), and 3-to-2 (89%) lane-closure configurations. Based on the analysis, it was observed that machine-learning models performed better than the traditional statistical models in estimating queue lengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的芝麻完成签到 ,获得积分10
1秒前
苹果完成签到,获得积分10
1秒前
弹剑作歌完成签到,获得积分10
2秒前
2秒前
科目三应助lan采纳,获得10
3秒前
wenhao发布了新的文献求助10
4秒前
4秒前
赵川完成签到 ,获得积分10
6秒前
zz发布了新的文献求助10
8秒前
9秒前
flash完成签到,获得积分10
9秒前
无心的若山完成签到,获得积分10
10秒前
敬老院N号应助绝闆唯一采纳,获得20
11秒前
hxhjy完成签到,获得积分20
12秒前
研友_LmgOaZ完成签到 ,获得积分0
12秒前
hcjxj完成签到,获得积分10
14秒前
flash发布了新的文献求助10
14秒前
现代完成签到,获得积分10
14秒前
16秒前
舒心梦玉完成签到,获得积分10
16秒前
如意完成签到,获得积分10
17秒前
竹羽完成签到 ,获得积分10
17秒前
zy完成签到,获得积分10
19秒前
SPQR发布了新的文献求助10
19秒前
斯文败类应助22222采纳,获得10
20秒前
zbc发布了新的文献求助10
22秒前
nenoaowu发布了新的文献求助30
22秒前
踏实奇异果完成签到,获得积分10
22秒前
嫁个养熊猫的完成签到 ,获得积分10
24秒前
linyuping发布了新的文献求助10
24秒前
失眠的汽车完成签到,获得积分10
25秒前
28秒前
Yanice完成签到,获得积分10
29秒前
贤惠的碧空完成签到,获得积分10
31秒前
winson完成签到 ,获得积分10
33秒前
008完成签到 ,获得积分10
33秒前
灵活又幸福的胖完成签到,获得积分10
34秒前
懒懒洋洋洋完成签到 ,获得积分10
35秒前
35秒前
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242069
求助须知:如何正确求助?哪些是违规求助? 2886396
关于积分的说明 8243205
捐赠科研通 2555019
什么是DOI,文献DOI怎么找? 1383201
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625417