Leveraging diverse cell-death patterns in diagnosis of sepsis by integrating bioinformatics and machine learning

计算机科学 生物信息学 败血症 数据科学 计算生物学 人工智能 机器学习 医学 生物 免疫学
作者
Mi Liu,Xingxing Gao,Hongfa Wang,Yiping Zhang,Xiaojun Li,Renlai Zhu,Yunru Sheng
出处
期刊:PeerJ [PeerJ]
卷期号:13: e19077-e19077
标识
DOI:10.7717/peerj.19077
摘要

Background Sepsis is a life-threatening disease causing millions of deaths every year. It has been reported that programmed cell death (PCD) plays a critical role in the development and progression of sepsis, which has the potential to be a diagnosis and prognosis indicator for patient with sepsis. Methods Fourteen PCD patterns were analyzed for model construction. Seven transcriptome datasets and a single cell sequencing dataset were collected from the Gene Expression Omnibus database. Results A total of 289 PCD-related differentially expressed genes were identified between sepsis patients and healthy individuals. The machine learning algorithm screened three PCD-related genes, NLRC4, TXN and S100A9, as potential biomarkers for sepsis. The area under curve of the diagnostic model reached 100.0% in the training set and 100.0%, 99.9%, 98.9%, 99.5% and 98.6% in five validation sets. Furthermore, we verified the diagnostic genes in sepsis patients from our center via qPCR experiment. Single cell sequencing analysis revealed that NLRC4, TXN and S100A9 were mainly expressed on myeloid/monocytes and dendritic cells. Immune infiltration analysis revealed that multiple immune cells involved in the development of sepsis. Correlation and gene set enrichment analysis (GSEA) analysis revealed that the three biomarkers were significantly associated with immune cells infiltration. Conclusions We developed and validated a diagnostic model for sepsis based on three PCD-related genes. Our study might provide potential peripheral blood diagnostic candidate biomarkers for patients with sepsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安之若素发布了新的文献求助10
刚刚
刚刚
酷波er应助xuxu采纳,获得10
刚刚
李健应助lxh采纳,获得10
1秒前
meo应助小孩015采纳,获得10
1秒前
科研通AI5应助陈露佳采纳,获得10
2秒前
SciGPT应助zqq123采纳,获得10
2秒前
周周发布了新的文献求助10
3秒前
3秒前
3秒前
kaiqiang完成签到,获得积分10
4秒前
4秒前
4秒前
biglixiang完成签到,获得积分10
4秒前
佩琪完成签到,获得积分10
5秒前
大个应助hmj1采纳,获得10
5秒前
5秒前
jsdk发布了新的文献求助10
5秒前
Orange应助罗沫沫采纳,获得10
7秒前
迅速凡霜发布了新的文献求助10
9秒前
小林太郎应助Lwxbb采纳,获得30
9秒前
潘婷婷呀发布了新的文献求助10
10秒前
haha给haha的求助进行了留言
10秒前
我是老大应助wuxunxun2015采纳,获得10
10秒前
11秒前
11秒前
11秒前
不将就完成签到 ,获得积分10
12秒前
13秒前
14秒前
大胆中恶发布了新的文献求助20
14秒前
不安青牛应助冷酷豌豆采纳,获得10
14秒前
15秒前
wjl发布了新的文献求助10
16秒前
看火人完成签到 ,获得积分10
16秒前
16秒前
lxh发布了新的文献求助10
16秒前
果果瑞宁发布了新的文献求助10
17秒前
17秒前
学术垃圾发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090