益生菌
发酵
食品科学
微生物群
生物
酶
化学
生物化学
细菌
微生物学
遗传学
作者
Liandi Yang,Jin Zhang,Zhihua Chen,Yanqing Chen,Changtong Wang,Han Yu,Fuyuan Zuo,Wenming Huang
标识
DOI:10.1021/acs.jafc.4c11539
摘要
The high fiber content and low rumen digestibility prevent the efficient use of distiller's grains (DGS) in ruminant feeds. This study investigated the effects of probiotics (Lactiplantibacillus plantarum and Bacillus subtilis) and enzymes (β-glucanase, xylanase, β-mannanase, and cellulase) on DGS nutrient content, ruminal degradability, and microbial communities under anaerobic storage for 30 days. Groups included control (C), probiotics (B), enzymes (E), and their mixture (EB). As compared to groups C, B, and E, neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, and cellulose contents were significantly decreased and the ruminal degradability of NDF and ADF at 48 h was significantly increased in group EB (p < 0.05). Enzyme activities significantly affected bacterial abundance, and the contents of these enzymes were negatively correlated with the content of fibrous components. The abundances of Bacillus and Rummeliibacillus were negatively correlated with fiber content but positively correlated with the activities of these enzymes. The symbiotic relationship between Bacillus and Anaerocolumna in the EB group sustained the synergistic effects of probiotics and enzymes. Co-fermentation of probiotics and enzyme additives enhanced the nutritional value of DGS, which was associated not only with probiotic-enzyme synergy but also variations in dominant microbes and microbiome commensal relationships.
科研通智能强力驱动
Strongly Powered by AbleSci AI