An Accurate Inland Water Garbage Recognition Network for USV Camera Images

垃圾 计算机科学 人工智能 计算机视觉 环境科学 程序设计语言
作者
Min Lu,Xia Xiao,Xiaoyu Zhang,Yuan Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adc02e
摘要

Abstract Accurate detection of water surface garbage is crucial for developing an environmentally friendly Internet of Things (IoT) system based on unmanned surface vehicles (USVs). However, it is still challenging to automatically recognize and measure the location of water garbage, hindered by complex factors like varying sunlight conditions and the minute size of garbage targets. This paper aims to develop an accurate water garbage recognition network (WGR-Net) that improves performance through efficient feature extraction, transmission, and restoration of feature resolution. The proposed method first adopts the YOLOv9 network architecture that combines generalized efficient layer aggregation network (GELAN) with programmable gradient information (PGI) to overcome the problem of data loss in deep networks. Then, in order to improve the accuracy and training efficiency of models with massive parameters, the backbone module of the pretrained model on the COCO dataset is frozen for feature extraction. The head module of this pretrained model is transferred and fine-tuned by USV camera images specifically for water surface garbage recognition. Furthermore, an ultra-lightweight and effective upsampler is introduced into the fine-tuned model to restore the feature resolution. The performance of the proposed model is tested using the FLoW-IMG dataset collected by the ORCA unmanned cleaning vessel and WSODD dataset, and comprehensive performance comparisons are conducted on multiple YOLO series models. The results demonstrate that the proposed WGR-Net significantly improves the accuracy of water garbage recognition, achieving a mAP@0.5 of 92.9% and mAP@0.5¬0.95 of 51.7%. The garbage tracking results of water surface video also show a reduction in missed and false detections. The proposed method effectively promotes the accurate recognition of inland water garbage, providing strong technical support for the application of USV based environmental IoT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冰魂应助spring采纳,获得10
刚刚
科研通AI5应助呼呼兔采纳,获得10
1秒前
难得糊涂发布了新的文献求助10
2秒前
2秒前
caizhiwei发布了新的文献求助10
2秒前
Willing发布了新的文献求助30
3秒前
侃侃完成签到,获得积分10
5秒前
5秒前
SIMBA完成签到,获得积分10
5秒前
科研通AI5应助猪猪hero采纳,获得30
5秒前
星辰大海应助DX采纳,获得50
6秒前
6秒前
LL发布了新的文献求助50
6秒前
7秒前
8秒前
Yi完成签到,获得积分10
8秒前
8秒前
Hello应助rye227采纳,获得50
9秒前
大个应助1234645678采纳,获得10
9秒前
呋喃发布了新的文献求助10
10秒前
10秒前
南边的海发布了新的文献求助150
11秒前
cbrown发布了新的文献求助10
12秒前
风清扬完成签到,获得积分10
12秒前
caizhiwei发布了新的文献求助10
13秒前
今后应助华东偏振王采纳,获得10
14秒前
丘比特应助花痴的文昊采纳,获得10
14秒前
冷静凌文完成签到,获得积分10
15秒前
平常的毛豆应助三清小爷采纳,获得10
16秒前
18秒前
20秒前
20秒前
21秒前
打打应助笑点低的汝燕采纳,获得10
21秒前
drew完成签到 ,获得积分10
22秒前
难得糊涂完成签到,获得积分10
22秒前
华东偏振王完成签到,获得积分20
23秒前
23秒前
CipherSage应助wilson采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775221
求助须知:如何正确求助?哪些是违规求助? 3320863
关于积分的说明 10202435
捐赠科研通 3035730
什么是DOI,文献DOI怎么找? 1665682
邀请新用户注册赠送积分活动 797102
科研通“疑难数据库(出版商)”最低求助积分说明 757700