Machine Learning and Bioinformatics to Identify Coagulation Biomarkers in Sepsis-Related Kidney Injury

医学 败血症 急性肾损伤 纤维蛋白原 免疫系统 发病机制 弥漫性血管内凝血 下调和上调 内科学 免疫学 基因 生物 生物化学
作者
Ling Liu,Tiancong Zhang,Liman Li,Yang‐Xin Fu,Qiang Meng,Shuang Wang,Meixia Zhang
出处
期刊:Shock [Lippincott Williams & Wilkins]
标识
DOI:10.1097/shk.0000000000002600
摘要

Abstract Background Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening complication with mortality rates exceeding 50%, yet its molecular drivers remain poorly defined. Dysregulated coagulation is increasingly implicated in SA-AKI pathogenesis through microvascular thrombosis and immune crosstalk, but kidney-specific coagulation biomarkers remain uncharacterized. Methods Using murine (Mus musculus) transcriptomic datasets (GSE120879, GSE227623) from the NCBI GEO database, we integrated bioinformatics and machine learning to identify coagulation-related genes differentially expressed (DE-CRGs) in SA-AKI. Hub genes were validated via external datasets (GSE142615), qRT-PCR, and immunohistochemistry in a cecal ligation and puncture (CLP) mouse model. Immune infiltration and checkpoint correlations were analyzed using ImmuCellAI. Diagnostic performance was assessed in a clinical cohort (n = 15) via ROC curve. Results Four hub DE-CRGs—C3, F3, Fgg, and Serping1—were consistently upregulated in murine SA-AKI (qRT-PCR fold-changes: 7.4- to 23.6-fold, p < 0.05). F3 protein expression was confirmed by immunohistochemistry (p < 0.01). Immune profiling revealed T cell/NK cell infiltration and PD-L1 (CD274) co-expression with all hub genes (r = 0.62–0.78, p < 0.05). Clinically, a multi-marker panel (fibrinogen, TAT, C3) achieved an AUC of 0.853 (95% CI: 0.72–0.98) for SA-AKI diagnosis. Conclusion This study identifies C3, F3, Fgg, and Serping1 as potential novel coagulation-immune biomarkers for SA-AKI, with validated diagnostic utility. These findings bridge the critical knowledge gap between coagulation dysregulation and immune-mediated tubular injury in SA-AKI pathogenesis and provide a translational framework for early detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助无情的友容采纳,获得10
1秒前
1秒前
gyd发布了新的文献求助10
2秒前
2秒前
3秒前
包容若风完成签到,获得积分10
3秒前
谢晓东发布了新的文献求助10
5秒前
6秒前
HY完成签到,获得积分10
6秒前
excellent发布了新的文献求助10
7秒前
科研通AI5应助酱er采纳,获得10
7秒前
9秒前
汉堡包应助易槐采纳,获得10
9秒前
9秒前
10秒前
弱虫完成签到,获得积分20
10秒前
syqlyd完成签到 ,获得积分10
12秒前
jiwoong发布了新的文献求助10
12秒前
Yipeng98发布了新的文献求助10
12秒前
传奇3应助MJ采纳,获得10
13秒前
13秒前
笨蛋美女完成签到 ,获得积分10
13秒前
14秒前
chenchen发布了新的文献求助10
15秒前
15秒前
子车茗应助haha采纳,获得10
16秒前
17秒前
18秒前
鳕鱼发布了新的文献求助10
19秒前
19秒前
乐乐应助无辜的发卡采纳,获得10
20秒前
20秒前
22秒前
无奈薯片完成签到,获得积分20
24秒前
细心的柏柳应助沟通亿心采纳,获得10
24秒前
25秒前
叶思言发布了新的文献求助10
25秒前
爹爹发布了新的文献求助10
27秒前
无奈薯片发布了新的文献求助10
27秒前
YC完成签到,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814