Unravelling the Oxygen Evolution Mechanism of Lithium‐Rich Antifluorite Prelithiation Agent Based on Anionic Oxidation

机制(生物学) 锂(药物) 氧气 析氧 化学工程 材料科学 化学 组合化学 有机化学 生物 工程类 认识论 物理化学 电化学 哲学 电极 内分泌学
作者
Yuanlong Zhu,Ruoyu Xu,Yichun Zheng,Yilong Chen,Jianhua Yin,Jiyuan Xue,Baodan Zhang,Li Li,Guifan Zeng,Haiyan Luo,Xiaohong Wu,Kang Zhang,Zixin Wu,Siyu Yang,Shuoyu Li,Yang Sun,Datong Zhang,Yu Qiao,Shi‐Gang Sun
出处
期刊:Angewandte Chemie [Wiley]
卷期号:64 (19): e202502126-e202502126 被引量:14
标识
DOI:10.1002/anie.202502126
摘要

Abstract Developing sacrificial cathode prelithiation technology to compensate for irreversible lithium loss is crucial for enhancing the energy density of lithium‐ion batteries. Antifluorite Li‐rich Li 5 FeO 4 (LFO) is a promising prelithiation agent due to its high theoretical capacity (867 mAh g −1 ) and superior decomposition dynamic (<4.0 V vs. Li/Li + ). However, the oxygen evolution mechanism in LFO remains unclear, limiting its application as an ideal prelithiation agent. Herein, we systematically track the full lifecycle oxygen footprint in LFO lattice, electrolyte and solid electrolyte interface (SEI). We demonstrate the lattice mismatch induced by the quasi‐disorder rocksalt intermediate phase can activate the lattice oxygen oxidation promoting the dimerization to O 2 . Specifically, in contrast to the O─O dimers formed within typical anionic‐redox active cathodes, the oxidation of lattice oxygen in LFO generates O − stabilized in Li 6 ‐O configuration. Significantly, a pair of edge‐sharing Li 6 ‐O configurations transforms into a superoxo dimer, which further evolves into O 2 via a ligand‐to‐metal charge transfer process. Moreover, we demonstrate that nucleophilic intermediates threaten the stability of electrolytes and SEI. Leveraging the insights above, we offer comprehensive perspectives for the modification of ideal prelithiation agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Return应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
Return应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
Return应助科研通管家采纳,获得10
2秒前
科目三应助lk采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
求助人员应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
2633148059完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
幼儿园老大完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
6秒前
shepherd应助libe采纳,获得30
6秒前
576-576完成签到 ,获得积分10
6秒前
科目三应助体贴凌柏采纳,获得10
6秒前
6秒前
splendid完成签到,获得积分10
6秒前
8秒前
Tu发布了新的文献求助10
8秒前
传奇3应助123456采纳,获得10
9秒前
llj完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
李小晴天完成签到 ,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049