AI Risk Prediction Tools for Alloplastic Breast Reconstruction

列线图 医学 布里氏评分 逻辑回归 接收机工作特性 血清瘤 乳腺癌 乳房再造术 机器学习 外科 肿瘤科 内科学 癌症 计算机科学 并发症
作者
Jonlin Chen,Ariel Gabay,Minji Kim,Uchechukwu O. Amakiri,Lillian Boe,Carrie S. Stern,Babak J. Mehrara,Chris Sidey‐Gibbons,Jonas A. Nelson
出处
期刊:Plastic and Reconstructive Surgery [Lippincott Williams & Wilkins]
标识
DOI:10.1097/prs.0000000000012124
摘要

INTRODUCTION: Accurate risk prediction for patients undergoing breast reconstruction with tissue expanders (TEs) can improve patient counseling and shared decision-making. This study aimed to develop and evaluate traditional statistical and machine learning (ML) approaches to predicting complications in alloplastic breast reconstruction. METHODS: Patient characteristics, surgical techniques, and complications were collected for all women undergoing immediate TE placement from 2017-2023 at Memorial Sloan Kettering Cancer Center. Multivariable logistic regression and ML models were developed to predict TE loss, infection, and seroma. ML model performance was optimized using ten-fold cross validation with hyperparameter tuning. Evaluation metrics included area under the receiver operating curve (AUC), sensitivity, specificity, and Brier score. RESULTS: This study included 4,046 women undergoing 6,513 immediate TE placements. TE loss occurred in 7.6% of patients (4.8% of TEs), infection in 10% of patients (7.2% of TEs), and seroma in 11.5% of patients (6.2% of TEs). Traditional multivariable regression demonstrated AUCs of 0.63-0.69 and ML models demonstrated AUCs of 0.71-0.73 in predicting TE complications. SHAP analysis highlighted BMI, prepectoral placement, and chemotherapy as key predictors of TE complications. Top-performing models were built into nomograms and a web-based prediction application to provide real-time risk estimates based on patient-specific information. CONCLUSION: Accurate risk prediction tools using nomograms and ML models were developed to predict complications in alloplastic breast reconstruction. These findings support incorporating both traditional statistics and machine learning analyses into preoperative assessments of patients undergoing alloplastic breast reconstruction to enhance data-driven, personalized care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助深海鱼油DHA采纳,获得10
刚刚
无花果应助刘刘采纳,获得10
刚刚
呜呜发布了新的文献求助10
1秒前
聪慧千愁完成签到,获得积分20
1秒前
2秒前
科研通AI5应助啦啦啦采纳,获得10
3秒前
3秒前
言浅完成签到,获得积分10
3秒前
彭于晏应助心灵美凝竹采纳,获得10
4秒前
丁丁丁发布了新的文献求助10
4秒前
刘一三完成签到 ,获得积分10
4秒前
jiejie完成签到,获得积分10
5秒前
lai完成签到 ,获得积分10
5秒前
冷静新烟发布了新的文献求助10
5秒前
6秒前
风中世开发布了新的文献求助10
6秒前
SciGPT应助西门长海采纳,获得10
6秒前
6秒前
科研通AI5应助sk夏冰采纳,获得10
7秒前
喵喵喵发布了新的文献求助10
7秒前
子慕i发布了新的文献求助10
8秒前
NexusExplorer应助kkkk采纳,获得10
8秒前
10秒前
11秒前
爆米花应助等待的谷波采纳,获得10
11秒前
青蛙旅行完成签到 ,获得积分10
12秒前
kirazou完成签到,获得积分10
14秒前
Zp发布了新的文献求助10
15秒前
xifeng完成签到 ,获得积分10
15秒前
16秒前
玄武岩完成签到,获得积分10
16秒前
尊敬的半梅完成签到 ,获得积分10
16秒前
17秒前
zzz发布了新的文献求助10
18秒前
20秒前
酷波er应助喵喵喵采纳,获得10
21秒前
21秒前
kkkk发布了新的文献求助10
22秒前
24秒前
彭于晏应助小芮采纳,获得10
25秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3715197
求助须知:如何正确求助?哪些是违规求助? 3262195
关于积分的说明 9923072
捐赠科研通 2975911
什么是DOI,文献DOI怎么找? 1632015
邀请新用户注册赠送积分活动 774279
科研通“疑难数据库(出版商)”最低求助积分说明 744803