International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models

计量经济学 均方误差 Lasso(编程语言) 股票市场 可预测性 波动性(金融) 经济 股票市场指数 自回归模型 人工神经网络 库存(枪支) 回归 计算机科学 统计 数学 机器学习 工程类 古生物学 万维网 生物 机械工程
作者
Wang Jia,Xinyi Wang,Xu Wang
出处
期刊:The North American Journal of Economics and Finance [Elsevier]
卷期号:70: 102065-102065 被引量:1
标识
DOI:10.1016/j.najef.2023.102065
摘要

This paper aims to forecast the volatility of Chinese stock market under the effects of international crude oil shocks. Eight individual models, including multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU) and bidirectional gated recurrent unit (BiGRU) are constructed. The realized volatilities of the CSI 300 index and ten primary sector indices are taken as explained variables, respectively. Four oil shock indicators and the autoregressive terms of the realized volatilities are taken as explanatory variables. The SHAP method is used to analyze their effects on the stock indices. Based on eight individual models, four kinds of combination models, i.e., a mean combination (Mean), a median combination (Median), a trimmed mean combination (Trimmed Mean), and two discount mean squared forecasting error combinations (DMSPE (1) and DMSPE (0.9)) are proposed. We compare forecasting performance between combination and individual ones. Empirical results show that the effects of international crude oil shocks on Chinese stock market are significant and have strong predictability. The effects on the energy, industry, optional consumption, and public sectors are greater than those on the CSI 300 and other sectors. Most of the combination models can effectively improve forecasting accuracy. In addition, by changing the benchmark model, the lengths of the rolling window, and the historical lengths of oil shock indicators, we find that most of the combination models are robust in volatility forecasting. This study is of guiding significance for individual and institutional investors to understand the operating mechanism of Chinese stock markets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助何时何昕采纳,获得30
刚刚
跳跃寻绿发布了新的文献求助10
1秒前
dilli发布了新的文献求助10
2秒前
Hello应助KimTran采纳,获得10
2秒前
3秒前
潇洒的布偶完成签到,获得积分10
3秒前
不喝水的鱼完成签到,获得积分20
3秒前
PDY完成签到,获得积分10
3秒前
4秒前
4秒前
Zjin宇发布了新的文献求助10
5秒前
优秀醉易发布了新的文献求助10
7秒前
余姓懒完成签到,获得积分10
8秒前
大豆发布了新的文献求助10
8秒前
8秒前
PSY发布了新的文献求助10
9秒前
NexusExplorer应助钟旭采纳,获得10
9秒前
Hello应助钱念波采纳,获得10
11秒前
12秒前
13秒前
人机一号发布了新的文献求助10
13秒前
14秒前
高强完成签到,获得积分10
14秒前
15秒前
烟花应助panpan采纳,获得10
15秒前
cen完成签到,获得积分10
15秒前
蛇虫鼠蚁发布了新的文献求助10
15秒前
wly发布了新的文献求助10
16秒前
16秒前
科研绿老头完成签到 ,获得积分10
16秒前
16秒前
高强发布了新的文献求助10
17秒前
小小完成签到,获得积分20
18秒前
YoYoojaejae发布了新的文献求助30
18秒前
cen发布了新的文献求助10
19秒前
20秒前
Lucas应助人木采纳,获得10
20秒前
Rita应助追寻的元灵采纳,获得10
21秒前
21秒前
bear熊发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149723
求助须知:如何正确求助?哪些是违规求助? 2800743
关于积分的说明 7841670
捐赠科研通 2458302
什么是DOI,文献DOI怎么找? 1308386
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706