International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models

计量经济学 均方误差 Lasso(编程语言) 股票市场 可预测性 波动性(金融) 经济 股票市场指数 自回归模型 人工神经网络 库存(枪支) 回归 计算机科学 统计 数学 机器学习 工程类 古生物学 万维网 生物 机械工程
作者
Wang Jia,Xinyi Wang,Xu Wang
出处
期刊:The North American Journal of Economics and Finance [Elsevier]
卷期号:70: 102065-102065 被引量:1
标识
DOI:10.1016/j.najef.2023.102065
摘要

This paper aims to forecast the volatility of Chinese stock market under the effects of international crude oil shocks. Eight individual models, including multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU) and bidirectional gated recurrent unit (BiGRU) are constructed. The realized volatilities of the CSI 300 index and ten primary sector indices are taken as explained variables, respectively. Four oil shock indicators and the autoregressive terms of the realized volatilities are taken as explanatory variables. The SHAP method is used to analyze their effects on the stock indices. Based on eight individual models, four kinds of combination models, i.e., a mean combination (Mean), a median combination (Median), a trimmed mean combination (Trimmed Mean), and two discount mean squared forecasting error combinations (DMSPE (1) and DMSPE (0.9)) are proposed. We compare forecasting performance between combination and individual ones. Empirical results show that the effects of international crude oil shocks on Chinese stock market are significant and have strong predictability. The effects on the energy, industry, optional consumption, and public sectors are greater than those on the CSI 300 and other sectors. Most of the combination models can effectively improve forecasting accuracy. In addition, by changing the benchmark model, the lengths of the rolling window, and the historical lengths of oil shock indicators, we find that most of the combination models are robust in volatility forecasting. This study is of guiding significance for individual and institutional investors to understand the operating mechanism of Chinese stock markets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倩倩发布了新的文献求助10
刚刚
刚刚
ShawnJohn发布了新的文献求助10
刚刚
Owen应助梵墨采纳,获得10
1秒前
CCH完成签到,获得积分10
1秒前
2秒前
Bonnie发布了新的文献求助10
2秒前
居九九关注了科研通微信公众号
2秒前
2秒前
汤圆呢醒醒完成签到,获得积分10
2秒前
qc完成签到,获得积分20
3秒前
大Lee发布了新的文献求助10
3秒前
4秒前
鲁远望完成签到,获得积分10
4秒前
sean完成签到,获得积分10
5秒前
小龙完成签到 ,获得积分10
5秒前
罗梦完成签到,获得积分20
6秒前
LBX发布了新的文献求助20
6秒前
坦率灵槐发布了新的文献求助10
6秒前
Ronalsen完成签到 ,获得积分10
6秒前
7秒前
专一的铃铛完成签到,获得积分10
7秒前
怡然如凡完成签到,获得积分10
7秒前
wlscj应助小余同学采纳,获得20
8秒前
费飞扬完成签到,获得积分10
8秒前
桐桐应助冷酷的水壶采纳,获得10
8秒前
柔弱的幻灵完成签到,获得积分10
8秒前
zwangxia完成签到,获得积分10
8秒前
zlf完成签到,获得积分10
9秒前
momo发布了新的文献求助10
10秒前
今后应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
神奇女侠完成签到,获得积分10
12秒前
桐桐应助科研通管家采纳,获得30
12秒前
情怀应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
13秒前
Orange应助科研通管家采纳,获得10
13秒前
圆锥香蕉应助科研通管家采纳,获得20
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572