International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models

计量经济学 均方误差 Lasso(编程语言) 股票市场 可预测性 波动性(金融) 经济 股票市场指数 自回归模型 人工神经网络 库存(枪支) 回归 计算机科学 统计 数学 机器学习 工程类 古生物学 万维网 生物 机械工程
作者
Wang Jia,Xinyi Wang,Xu Wang
出处
期刊:The North American Journal of Economics and Finance [Elsevier]
卷期号:70: 102065-102065 被引量:1
标识
DOI:10.1016/j.najef.2023.102065
摘要

This paper aims to forecast the volatility of Chinese stock market under the effects of international crude oil shocks. Eight individual models, including multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU) and bidirectional gated recurrent unit (BiGRU) are constructed. The realized volatilities of the CSI 300 index and ten primary sector indices are taken as explained variables, respectively. Four oil shock indicators and the autoregressive terms of the realized volatilities are taken as explanatory variables. The SHAP method is used to analyze their effects on the stock indices. Based on eight individual models, four kinds of combination models, i.e., a mean combination (Mean), a median combination (Median), a trimmed mean combination (Trimmed Mean), and two discount mean squared forecasting error combinations (DMSPE (1) and DMSPE (0.9)) are proposed. We compare forecasting performance between combination and individual ones. Empirical results show that the effects of international crude oil shocks on Chinese stock market are significant and have strong predictability. The effects on the energy, industry, optional consumption, and public sectors are greater than those on the CSI 300 and other sectors. Most of the combination models can effectively improve forecasting accuracy. In addition, by changing the benchmark model, the lengths of the rolling window, and the historical lengths of oil shock indicators, we find that most of the combination models are robust in volatility forecasting. This study is of guiding significance for individual and institutional investors to understand the operating mechanism of Chinese stock markets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
杨德帅发布了新的文献求助30
2秒前
后知后觉发布了新的文献求助10
2秒前
3秒前
3秒前
Ikkyu发布了新的文献求助10
3秒前
李鸣笛发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
5秒前
Aurora完成签到,获得积分10
5秒前
Akim应助杨德帅采纳,获得10
5秒前
Onechch完成签到 ,获得积分10
7秒前
7秒前
luckypig发布了新的文献求助20
8秒前
Song完成签到,获得积分10
8秒前
9秒前
tomorrow发布了新的文献求助10
9秒前
驿路梨花完成签到,获得积分10
9秒前
10秒前
Sir.夏季风完成签到,获得积分10
10秒前
jiulin发布了新的文献求助10
10秒前
10秒前
磷脂酰肌醇完成签到,获得积分10
11秒前
苹果梦蕊关注了科研通微信公众号
11秒前
11秒前
12秒前
12秒前
12秒前
Nnn发布了新的文献求助80
13秒前
13秒前
香蕉觅云应助隐形的凌翠采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
陈龙平完成签到 ,获得积分10
14秒前
后知后觉完成签到,获得积分10
15秒前
David发布了新的文献求助10
15秒前
传奇3应助曾经一笑采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736993
求助须知:如何正确求助?哪些是违规求助? 5369908
关于积分的说明 15334507
捐赠科研通 4880710
什么是DOI,文献DOI怎么找? 2622987
邀请新用户注册赠送积分活动 1571843
关于科研通互助平台的介绍 1528696