已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models

计量经济学 均方误差 Lasso(编程语言) 股票市场 可预测性 波动性(金融) 经济 股票市场指数 自回归模型 人工神经网络 库存(枪支) 回归 计算机科学 统计 数学 机器学习 工程类 古生物学 万维网 生物 机械工程
作者
Wang Jia,Xinyi Wang,Xu Wang
出处
期刊:The North American Journal of Economics and Finance [Elsevier]
卷期号:70: 102065-102065 被引量:1
标识
DOI:10.1016/j.najef.2023.102065
摘要

This paper aims to forecast the volatility of Chinese stock market under the effects of international crude oil shocks. Eight individual models, including multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU) and bidirectional gated recurrent unit (BiGRU) are constructed. The realized volatilities of the CSI 300 index and ten primary sector indices are taken as explained variables, respectively. Four oil shock indicators and the autoregressive terms of the realized volatilities are taken as explanatory variables. The SHAP method is used to analyze their effects on the stock indices. Based on eight individual models, four kinds of combination models, i.e., a mean combination (Mean), a median combination (Median), a trimmed mean combination (Trimmed Mean), and two discount mean squared forecasting error combinations (DMSPE (1) and DMSPE (0.9)) are proposed. We compare forecasting performance between combination and individual ones. Empirical results show that the effects of international crude oil shocks on Chinese stock market are significant and have strong predictability. The effects on the energy, industry, optional consumption, and public sectors are greater than those on the CSI 300 and other sectors. Most of the combination models can effectively improve forecasting accuracy. In addition, by changing the benchmark model, the lengths of the rolling window, and the historical lengths of oil shock indicators, we find that most of the combination models are robust in volatility forecasting. This study is of guiding significance for individual and institutional investors to understand the operating mechanism of Chinese stock markets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮代梅发布了新的文献求助50
1秒前
1秒前
Tingshan发布了新的文献求助10
2秒前
2秒前
RYCrystal发布了新的文献求助10
3秒前
3秒前
mountainbike完成签到,获得积分10
4秒前
4秒前
情怀应助乐观的书竹采纳,获得10
4秒前
齐静春完成签到,获得积分10
4秒前
4秒前
6秒前
Ddddd完成签到,获得积分10
6秒前
6秒前
weing发布了新的文献求助10
7秒前
orixero应助银鱼在游采纳,获得30
8秒前
量子星尘发布了新的文献求助10
8秒前
fanger发布了新的文献求助10
9秒前
Ddddd发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
周老八完成签到,获得积分10
11秒前
云泥完成签到,获得积分10
12秒前
ding应助weing采纳,获得10
12秒前
14秒前
komorebi发布了新的文献求助10
14秒前
小小精神应助Sara采纳,获得30
16秒前
16秒前
共享精神应助LYZSh采纳,获得10
18秒前
19秒前
Yasong完成签到 ,获得积分10
20秒前
89757完成签到,获得积分10
20秒前
21秒前
22秒前
lyy完成签到 ,获得积分10
22秒前
25秒前
melo完成签到,获得积分10
25秒前
负阳氧发布了新的文献求助10
26秒前
Alicia完成签到,获得积分10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705194
求助须知:如何正确求助?哪些是违规求助? 5161562
关于积分的说明 15244468
捐赠科研通 4859139
什么是DOI,文献DOI怎么找? 2607538
邀请新用户注册赠送积分活动 1558660
关于科研通互助平台的介绍 1516253