International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models

计量经济学 均方误差 Lasso(编程语言) 股票市场 可预测性 波动性(金融) 经济 股票市场指数 自回归模型 人工神经网络 库存(枪支) 回归 计算机科学 统计 数学 机器学习 工程类 古生物学 万维网 生物 机械工程
作者
Wang Jia,Xinyi Wang,Xu Wang
出处
期刊:The North American Journal of Economics and Finance [Elsevier]
卷期号:70: 102065-102065 被引量:1
标识
DOI:10.1016/j.najef.2023.102065
摘要

This paper aims to forecast the volatility of Chinese stock market under the effects of international crude oil shocks. Eight individual models, including multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU) and bidirectional gated recurrent unit (BiGRU) are constructed. The realized volatilities of the CSI 300 index and ten primary sector indices are taken as explained variables, respectively. Four oil shock indicators and the autoregressive terms of the realized volatilities are taken as explanatory variables. The SHAP method is used to analyze their effects on the stock indices. Based on eight individual models, four kinds of combination models, i.e., a mean combination (Mean), a median combination (Median), a trimmed mean combination (Trimmed Mean), and two discount mean squared forecasting error combinations (DMSPE (1) and DMSPE (0.9)) are proposed. We compare forecasting performance between combination and individual ones. Empirical results show that the effects of international crude oil shocks on Chinese stock market are significant and have strong predictability. The effects on the energy, industry, optional consumption, and public sectors are greater than those on the CSI 300 and other sectors. Most of the combination models can effectively improve forecasting accuracy. In addition, by changing the benchmark model, the lengths of the rolling window, and the historical lengths of oil shock indicators, we find that most of the combination models are robust in volatility forecasting. This study is of guiding significance for individual and institutional investors to understand the operating mechanism of Chinese stock markets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助wp采纳,获得10
刚刚
1秒前
yungu完成签到,获得积分10
1秒前
1秒前
1秒前
shin完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Yxs发布了新的文献求助10
1秒前
汉堡包应助笑一笑采纳,获得10
2秒前
史尔美完成签到,获得积分10
2秒前
jingyu发布了新的文献求助10
2秒前
1111111111应助xiao采纳,获得10
2秒前
赵某人完成签到,获得积分10
2秒前
CipherSage应助彩色的云采纳,获得10
2秒前
Cynthia完成签到,获得积分10
3秒前
鳗鱼绿蝶完成签到,获得积分10
3秒前
自由的松发布了新的文献求助10
4秒前
1111发布了新的文献求助10
4秒前
只只发布了新的文献求助10
4秒前
CodeCraft应助啊撒网大大e采纳,获得10
4秒前
陶醉白梅发布了新的文献求助10
5秒前
Tanya发布了新的文献求助10
5秒前
333发布了新的文献求助10
5秒前
YONG完成签到,获得积分10
6秒前
6秒前
lucid发布了新的文献求助10
6秒前
一支蕉发布了新的文献求助10
7秒前
激情的乌龟完成签到,获得积分10
7秒前
科研疯狂者完成签到,获得积分10
7秒前
科研废人完成签到,获得积分10
7秒前
糖不太甜完成签到,获得积分10
7秒前
八九发布了新的文献求助10
8秒前
9秒前
9秒前
ldhylm完成签到,获得积分10
10秒前
10秒前
大方听白完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661137
求助须知:如何正确求助?哪些是违规求助? 4837217
关于积分的说明 15093992
捐赠科研通 4819845
什么是DOI,文献DOI怎么找? 2579617
邀请新用户注册赠送积分活动 1533925
关于科研通互助平台的介绍 1492648