International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models

计量经济学 均方误差 Lasso(编程语言) 股票市场 可预测性 波动性(金融) 经济 股票市场指数 自回归模型 人工神经网络 库存(枪支) 回归 计算机科学 统计 数学 机器学习 工程类 古生物学 万维网 生物 机械工程
作者
Wang Jia,Xinyi Wang,Xu Wang
出处
期刊:The North American Journal of Economics and Finance [Elsevier]
卷期号:70: 102065-102065 被引量:1
标识
DOI:10.1016/j.najef.2023.102065
摘要

This paper aims to forecast the volatility of Chinese stock market under the effects of international crude oil shocks. Eight individual models, including multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU) and bidirectional gated recurrent unit (BiGRU) are constructed. The realized volatilities of the CSI 300 index and ten primary sector indices are taken as explained variables, respectively. Four oil shock indicators and the autoregressive terms of the realized volatilities are taken as explanatory variables. The SHAP method is used to analyze their effects on the stock indices. Based on eight individual models, four kinds of combination models, i.e., a mean combination (Mean), a median combination (Median), a trimmed mean combination (Trimmed Mean), and two discount mean squared forecasting error combinations (DMSPE (1) and DMSPE (0.9)) are proposed. We compare forecasting performance between combination and individual ones. Empirical results show that the effects of international crude oil shocks on Chinese stock market are significant and have strong predictability. The effects on the energy, industry, optional consumption, and public sectors are greater than those on the CSI 300 and other sectors. Most of the combination models can effectively improve forecasting accuracy. In addition, by changing the benchmark model, the lengths of the rolling window, and the historical lengths of oil shock indicators, we find that most of the combination models are robust in volatility forecasting. This study is of guiding significance for individual and institutional investors to understand the operating mechanism of Chinese stock markets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jared应助Atopos采纳,获得10
1秒前
好好发布了新的文献求助10
1秒前
发发发完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
小鹿儿完成签到,获得积分0
3秒前
猫尔儿完成签到,获得积分10
3秒前
4秒前
4秒前
TaiLongYang完成签到,获得积分20
4秒前
赘婿应助飞云之下采纳,获得10
4秒前
5秒前
和谐飞飞完成签到,获得积分10
6秒前
mmy完成签到,获得积分10
6秒前
6秒前
yangxt-iga发布了新的文献求助10
6秒前
体贴琳完成签到 ,获得积分10
6秒前
小于子88完成签到,获得积分10
6秒前
斯文败类应助vv1223采纳,获得20
7秒前
SciGPT应助不舍天真采纳,获得10
7秒前
7秒前
8秒前
LZCCC完成签到,获得积分10
8秒前
fvsuar完成签到,获得积分10
8秒前
大聪明发布了新的文献求助10
8秒前
Eins完成签到 ,获得积分10
8秒前
丢丢在吗发布了新的文献求助10
8秒前
佳佳发布了新的文献求助10
8秒前
su发布了新的文献求助10
8秒前
见雨鱼完成签到 ,获得积分10
8秒前
8秒前
狗熊发布了新的文献求助10
9秒前
9秒前
打打应助追寻的问玉采纳,获得10
9秒前
a'mao'men完成签到,获得积分10
9秒前
嘟嘟发布了新的文献求助10
9秒前
思源应助PaoPao采纳,获得10
9秒前
王旭发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977