International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models

计量经济学 均方误差 Lasso(编程语言) 股票市场 可预测性 波动性(金融) 经济 股票市场指数 自回归模型 人工神经网络 库存(枪支) 回归 计算机科学 统计 数学 机器学习 工程类 古生物学 万维网 生物 机械工程
作者
Wang Jia,Xinyi Wang,Xu Wang
出处
期刊:The North American Journal of Economics and Finance [Elsevier BV]
卷期号:70: 102065-102065 被引量:1
标识
DOI:10.1016/j.najef.2023.102065
摘要

This paper aims to forecast the volatility of Chinese stock market under the effects of international crude oil shocks. Eight individual models, including multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU) and bidirectional gated recurrent unit (BiGRU) are constructed. The realized volatilities of the CSI 300 index and ten primary sector indices are taken as explained variables, respectively. Four oil shock indicators and the autoregressive terms of the realized volatilities are taken as explanatory variables. The SHAP method is used to analyze their effects on the stock indices. Based on eight individual models, four kinds of combination models, i.e., a mean combination (Mean), a median combination (Median), a trimmed mean combination (Trimmed Mean), and two discount mean squared forecasting error combinations (DMSPE (1) and DMSPE (0.9)) are proposed. We compare forecasting performance between combination and individual ones. Empirical results show that the effects of international crude oil shocks on Chinese stock market are significant and have strong predictability. The effects on the energy, industry, optional consumption, and public sectors are greater than those on the CSI 300 and other sectors. Most of the combination models can effectively improve forecasting accuracy. In addition, by changing the benchmark model, the lengths of the rolling window, and the historical lengths of oil shock indicators, we find that most of the combination models are robust in volatility forecasting. This study is of guiding significance for individual and institutional investors to understand the operating mechanism of Chinese stock markets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨林发布了新的文献求助10
1秒前
燕儿应助嗦了蜜采纳,获得10
1秒前
xy发布了新的文献求助30
1秒前
CR完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
sanqian911完成签到,获得积分10
2秒前
何垠禹完成签到,获得积分10
2秒前
长生完成签到 ,获得积分10
2秒前
11111发布了新的文献求助10
2秒前
似水流年完成签到,获得积分10
2秒前
3秒前
落寞易形完成签到,获得积分10
3秒前
liuye0202完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
6秒前
科研通AI5应助torfun采纳,获得10
6秒前
韩程果完成签到 ,获得积分20
6秒前
papi完成签到 ,获得积分10
6秒前
like411发布了新的文献求助10
6秒前
feizhuliu完成签到,获得积分10
7秒前
科研通AI2S应助龍焱采纳,获得10
7秒前
棉花糖吖吖吖完成签到 ,获得积分10
7秒前
玛丽完成签到,获得积分10
8秒前
8秒前
酷波er应助给我好好读书采纳,获得10
8秒前
干净白容完成签到,获得积分10
8秒前
Ava应助hi小豆采纳,获得10
9秒前
柔弱小懒虫完成签到 ,获得积分10
9秒前
TobyGarfielD发布了新的文献求助10
9秒前
心灵美的石头完成签到,获得积分10
9秒前
CipherSage应助5High_0采纳,获得10
10秒前
哇哈哈哈发布了新的文献求助10
10秒前
韩程果关注了科研通微信公众号
10秒前
00完成签到 ,获得积分10
10秒前
12秒前
fannie完成签到,获得积分10
12秒前
乔巧完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743