亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models

计量经济学 均方误差 Lasso(编程语言) 股票市场 可预测性 波动性(金融) 经济 股票市场指数 自回归模型 人工神经网络 库存(枪支) 回归 计算机科学 统计 数学 机器学习 工程类 古生物学 万维网 生物 机械工程
作者
Wang Jia,Xinyi Wang,Xu Wang
出处
期刊:The North American Journal of Economics and Finance [Elsevier BV]
卷期号:70: 102065-102065 被引量:1
标识
DOI:10.1016/j.najef.2023.102065
摘要

This paper aims to forecast the volatility of Chinese stock market under the effects of international crude oil shocks. Eight individual models, including multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU) and bidirectional gated recurrent unit (BiGRU) are constructed. The realized volatilities of the CSI 300 index and ten primary sector indices are taken as explained variables, respectively. Four oil shock indicators and the autoregressive terms of the realized volatilities are taken as explanatory variables. The SHAP method is used to analyze their effects on the stock indices. Based on eight individual models, four kinds of combination models, i.e., a mean combination (Mean), a median combination (Median), a trimmed mean combination (Trimmed Mean), and two discount mean squared forecasting error combinations (DMSPE (1) and DMSPE (0.9)) are proposed. We compare forecasting performance between combination and individual ones. Empirical results show that the effects of international crude oil shocks on Chinese stock market are significant and have strong predictability. The effects on the energy, industry, optional consumption, and public sectors are greater than those on the CSI 300 and other sectors. Most of the combination models can effectively improve forecasting accuracy. In addition, by changing the benchmark model, the lengths of the rolling window, and the historical lengths of oil shock indicators, we find that most of the combination models are robust in volatility forecasting. This study is of guiding significance for individual and institutional investors to understand the operating mechanism of Chinese stock markets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助科研通管家采纳,获得10
1秒前
芳华正茂完成签到 ,获得积分10
4秒前
ldgsd完成签到 ,获得积分10
4秒前
HuanChen完成签到 ,获得积分10
6秒前
郑雅茵给郑雅茵的求助进行了留言
16秒前
24秒前
彩色德天完成签到,获得积分10
41秒前
领导范儿应助陈陈陈采纳,获得10
41秒前
46秒前
47秒前
fengliurencai完成签到,获得积分10
48秒前
彩色德天发布了新的文献求助30
50秒前
陈陈陈发布了新的文献求助10
53秒前
韩楠完成签到 ,获得积分10
55秒前
我的文献呢应助陈陈陈采纳,获得40
57秒前
罗舒发布了新的文献求助10
58秒前
陈陈陈完成签到,获得积分10
1分钟前
1分钟前
qinli完成签到,获得积分10
1分钟前
SciGPT应助li采纳,获得10
1分钟前
1分钟前
1分钟前
故意的茗发布了新的文献求助10
1分钟前
1分钟前
li发布了新的文献求助10
1分钟前
田様应助故意的茗采纳,获得10
1分钟前
StonesKing完成签到,获得积分10
1分钟前
yzt完成签到 ,获得积分10
1分钟前
1分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
hkxfg发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
Maple发布了新的文献求助10
2分钟前
roy完成签到,获得积分10
2分钟前
bkagyin应助hkxfg采纳,获得10
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214