已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models

计量经济学 均方误差 Lasso(编程语言) 股票市场 可预测性 波动性(金融) 经济 股票市场指数 自回归模型 人工神经网络 库存(枪支) 回归 计算机科学 统计 数学 机器学习 工程类 古生物学 万维网 生物 机械工程
作者
Wang Jia,Xinyi Wang,Xu Wang
出处
期刊:The North American Journal of Economics and Finance [Elsevier]
卷期号:70: 102065-102065 被引量:1
标识
DOI:10.1016/j.najef.2023.102065
摘要

This paper aims to forecast the volatility of Chinese stock market under the effects of international crude oil shocks. Eight individual models, including multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU) and bidirectional gated recurrent unit (BiGRU) are constructed. The realized volatilities of the CSI 300 index and ten primary sector indices are taken as explained variables, respectively. Four oil shock indicators and the autoregressive terms of the realized volatilities are taken as explanatory variables. The SHAP method is used to analyze their effects on the stock indices. Based on eight individual models, four kinds of combination models, i.e., a mean combination (Mean), a median combination (Median), a trimmed mean combination (Trimmed Mean), and two discount mean squared forecasting error combinations (DMSPE (1) and DMSPE (0.9)) are proposed. We compare forecasting performance between combination and individual ones. Empirical results show that the effects of international crude oil shocks on Chinese stock market are significant and have strong predictability. The effects on the energy, industry, optional consumption, and public sectors are greater than those on the CSI 300 and other sectors. Most of the combination models can effectively improve forecasting accuracy. In addition, by changing the benchmark model, the lengths of the rolling window, and the historical lengths of oil shock indicators, we find that most of the combination models are robust in volatility forecasting. This study is of guiding significance for individual and institutional investors to understand the operating mechanism of Chinese stock markets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
努力搞科研完成签到,获得积分10
9秒前
10秒前
11秒前
wjp完成签到 ,获得积分10
13秒前
啊熙完成签到 ,获得积分10
13秒前
13秒前
颜卿完成签到 ,获得积分10
13秒前
plum完成签到,获得积分20
13秒前
本本完成签到 ,获得积分10
14秒前
LB发布了新的文献求助10
15秒前
16秒前
BowieHuang应助梅赛德斯奔驰采纳,获得10
18秒前
JamesPei应助Aroma采纳,获得10
18秒前
于冰清发布了新的文献求助10
19秒前
21秒前
和谐诗双完成签到 ,获得积分10
24秒前
时光发布了新的文献求助10
27秒前
28秒前
circlez19完成签到,获得积分10
28秒前
梅赛德斯奔驰完成签到,获得积分10
31秒前
gexzygg完成签到,获得积分0
31秒前
所所应助等乙天采纳,获得10
32秒前
琳666完成签到,获得积分10
32秒前
32秒前
吴迪完成签到,获得积分20
33秒前
Wiz111发布了新的文献求助10
34秒前
狂野的尔冬完成签到 ,获得积分10
35秒前
虚心海燕完成签到,获得积分10
36秒前
万邦德完成签到,获得积分10
39秒前
王小雨完成签到 ,获得积分10
39秒前
40秒前
123完成签到 ,获得积分10
41秒前
Wiz111完成签到,获得积分10
42秒前
Fxy完成签到 ,获得积分10
43秒前
走啊走完成签到,获得积分10
45秒前
46秒前
MrZ1完成签到,获得积分10
47秒前
Owen应助默默善愁采纳,获得10
49秒前
CipherSage应助默默善愁采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538412
求助须知:如何正确求助?哪些是违规求助? 4625561
关于积分的说明 14596411
捐赠科研通 4566146
什么是DOI,文献DOI怎么找? 2503005
邀请新用户注册赠送积分活动 1481293
关于科研通互助平台的介绍 1452563