A deep learning-based dose prediction method for evaluation of radiotherapy treatment planning

深度学习 计算机科学 放射治疗计划 放射治疗 特征(语言学) 人工智能 残余物 卷积神经网络 直方图 核医学 模式识别(心理学) 算法 医学 放射科 图像(数学) 哲学 语言学
作者
Jiping Liu,Xiang Zhang,Xiaolong Cheng,Long Sun
出处
期刊:Journal of Radiation Research and Applied Sciences [Elsevier BV]
卷期号:17 (1): 100757-100757 被引量:3
标识
DOI:10.1016/j.jrras.2023.100757
摘要

To address the issue of low accuracy in dose distribution prediction in radiotherapy, we propose a deep learning-based model for predicting three-dimensional dose distribution in tumor radiation therapy. The model utilizes quantitative evaluation methods to assess the treatment plans. We selected a dataset of 130 cervical cancer patients, including CT images and target region files. A deep learning U-Net model based on convolutional neural networks and residual blocks was employed to automatically extract multi-scale and multi-level feature maps of CT images, target regions, and anatomical structures of critical organs for intensity-modulated radiation therapy (IMRT) treatment plans and perform three-dimensional dose distribution prediction. Quantitative analysis methods, including error measures such as maximum dose (Dmax), mean dose (Dmean), V20, and D95, were used. For cervical cancer cases, DVH (dose-volume histogram) graphs were generated based on the evaluation results, directly reflecting the differences between the actual and predicted doses. The actual errors met the basic requirements, and a quantitative evaluation approach was used to optimize the dosimetric parameters. The specific quantification results are: DSC: 86.52 ± 9.31, 95% HD: 3.74 ± 1.49, JD: 0.112 ± 0.026, MSD: 0.067 ± 0.031. Through training the deep learning model, we have successfully captured the complex nonlinear relationship between IMRT plan feature map parameters and three-dimensional dose distribution. In practical clinical applications, this trained model can accurately predict personalized three-dimensional dose distribution for new patients and effectively assess treatment plans in a quantitative manner. The source code is available at: https://github.com/xiebw9509/Radiotherapy_dose_prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朽木完成签到 ,获得积分10
刚刚
刚刚
丁浩伦应助Lll采纳,获得10
刚刚
111完成签到,获得积分10
1秒前
JiFeng关注了科研通微信公众号
2秒前
木木彡完成签到,获得积分10
3秒前
ZQ完成签到,获得积分10
4秒前
大胆的莛完成签到,获得积分10
5秒前
6秒前
sun完成签到,获得积分10
6秒前
Lucas应助你好采纳,获得10
7秒前
LIU完成签到,获得积分10
7秒前
我就是柠檬精完成签到,获得积分10
8秒前
9秒前
10秒前
彭于晏应助蔡小娜采纳,获得10
10秒前
852应助Li采纳,获得10
11秒前
LIU发布了新的文献求助10
11秒前
风荷旧梦完成签到,获得积分10
12秒前
12秒前
14秒前
压痕发布了新的文献求助10
14秒前
popvich完成签到,获得积分10
14秒前
不配.应助mochen采纳,获得10
15秒前
李联洪发布了新的文献求助10
15秒前
eric888应助Alex采纳,获得200
15秒前
哈哈哈哈哈哈完成签到 ,获得积分10
17秒前
房房房完成签到,获得积分10
17秒前
胡泽智完成签到,获得积分10
18秒前
Tin发布了新的文献求助30
18秒前
英姑应助LYF采纳,获得10
18秒前
孤独的柠檬完成签到,获得积分10
18秒前
jia完成签到 ,获得积分10
19秒前
大胆的莛发布了新的文献求助10
19秒前
香蕉觅云应助薛xue采纳,获得10
20秒前
ning完成签到 ,获得积分10
21秒前
22秒前
23秒前
JamesPei应助kaola采纳,获得10
25秒前
Summering666完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546756
求助须知:如何正确求助?哪些是违规求助? 3977890
关于积分的说明 12317527
捐赠科研通 3646280
什么是DOI,文献DOI怎么找? 2008092
邀请新用户注册赠送积分活动 1043696
科研通“疑难数据库(出版商)”最低求助积分说明 932377