已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of recurrent major depressive disorder using a residual denoising autoencoder framework: Insights from large-scale multisite fMRI data

自编码 人工智能 比例(比率) 残余物 模式识别(心理学) 重性抑郁障碍 降噪 计算机科学 机器学习 深度学习 心理学 临床心理学 地图学 算法 地理 心情
作者
Peishan Dai,Yun Q. Shi,Da Lu,Ying Zhou,Jialin Luo,Zhuang He,Zailiang Chen,Beiji Zou,Hui Tang,Zhigang Huang,Shenghui Liao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:247: 108114-108114 被引量:3
标识
DOI:10.1016/j.cmpb.2024.108114
摘要

Recurrent major depressive disorder (rMDD) has a high recurrence rate, and symptoms often worsen with each episode. Classifying rMDD using functional magnetic resonance imaging (fMRI) can enhance understanding of brain activity and aid diagnosis and treatment of this disorder. We developed a Residual Denoising Autoencoder (Res-DAE) framework for the classification of rMDD. The functional connectivity (FC) was extracted from fMRI data as features. The framework addresses site heterogeneity by employing the Combat method to harmonize feature distribution differences. A feature selection method based on Fisher scores was used to reduce redundant information in the features. A data augmentation strategy using a Synthetic Minority Over-sampling Technique algorithm based on Extended Frobenius Norm measure was incorporated to increase the sample size. Furthermore, a residual module was integrated into the autoencoder network to preserve important features and improve the classification accuracy. We tested our framework on a large-scale, multisite fMRI dataset, which includes 189 rMDD patients and 427 healthy controls. The Res-DAE achieved an average accuracy of 75.1 % (sensitivity = 69 %, specificity = 77.8 %) in cross-validation, thereby outperforming comparison methods. In a larger dataset that also includes first-episode depression (comprising 832 MDD patients and 779 healthy controls), the accuracy reached 70 %. We proposed a deep learning framework that can effectively classify rMDD and 33 identify the altered FC associated with rMDD. Our study may reveal changes in brain function 34 associated with rMDD and provide assistance for the diagnosis and treatment of rMDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋雪芹发布了新的文献求助10
1秒前
天天快乐应助咖啡续命采纳,获得10
1秒前
万能图书馆应助粗暴的达采纳,获得10
3秒前
K.I.D完成签到,获得积分10
3秒前
Lucas应助ChenYX采纳,获得10
5秒前
垚祎完成签到 ,获得积分10
5秒前
赘婿应助漂亮幻莲采纳,获得10
5秒前
星月完成签到 ,获得积分10
8秒前
井野浮应助云云采纳,获得10
9秒前
醉熏的迎天完成签到,获得积分10
12秒前
13秒前
16秒前
17秒前
18秒前
18秒前
18秒前
12发布了新的文献求助10
18秒前
瘦瘦发布了新的文献求助10
20秒前
羡雨0413完成签到,获得积分10
20秒前
Doctor.Xie发布了新的文献求助10
21秒前
咖啡续命发布了新的文献求助10
21秒前
漂亮幻莲发布了新的文献求助10
23秒前
23秒前
24秒前
27秒前
华仔应助小饶采纳,获得10
30秒前
pupuply发布了新的文献求助10
30秒前
李健的小迷弟应助12采纳,获得10
30秒前
YuanbinMao应助科研达人采纳,获得30
30秒前
SciGPT应助大胆的星月采纳,获得10
31秒前
33秒前
wanci应助企鹅采纳,获得10
34秒前
34秒前
8R60d8应助zzhou7采纳,获得10
34秒前
知秋不知秋完成签到,获得积分10
35秒前
coco发布了新的文献求助10
35秒前
情怀应助ff采纳,获得10
35秒前
36秒前
吗喽王完成签到,获得积分10
36秒前
萌新完成签到,获得积分10
39秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229357
求助须知:如何正确求助?哪些是违规求助? 2877059
关于积分的说明 8197722
捐赠科研通 2544406
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749