Classification of recurrent major depressive disorder using a residual denoising autoencoder framework: Insights from large-scale multisite fMRI data

自编码 人工智能 比例(比率) 残余物 模式识别(心理学) 重性抑郁障碍 降噪 计算机科学 机器学习 深度学习 心理学 临床心理学 地图学 算法 地理 心情
作者
Peishan Dai,Yun Q. Shi,Da Lu,Ying Zhou,Jialin Luo,Zhuang He,Zailiang Chen,Beiji Zou,Hui Tang,Zhigang Huang,Shenghui Liao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:247: 108114-108114 被引量:3
标识
DOI:10.1016/j.cmpb.2024.108114
摘要

Recurrent major depressive disorder (rMDD) has a high recurrence rate, and symptoms often worsen with each episode. Classifying rMDD using functional magnetic resonance imaging (fMRI) can enhance understanding of brain activity and aid diagnosis and treatment of this disorder. We developed a Residual Denoising Autoencoder (Res-DAE) framework for the classification of rMDD. The functional connectivity (FC) was extracted from fMRI data as features. The framework addresses site heterogeneity by employing the Combat method to harmonize feature distribution differences. A feature selection method based on Fisher scores was used to reduce redundant information in the features. A data augmentation strategy using a Synthetic Minority Over-sampling Technique algorithm based on Extended Frobenius Norm measure was incorporated to increase the sample size. Furthermore, a residual module was integrated into the autoencoder network to preserve important features and improve the classification accuracy. We tested our framework on a large-scale, multisite fMRI dataset, which includes 189 rMDD patients and 427 healthy controls. The Res-DAE achieved an average accuracy of 75.1 % (sensitivity = 69 %, specificity = 77.8 %) in cross-validation, thereby outperforming comparison methods. In a larger dataset that also includes first-episode depression (comprising 832 MDD patients and 779 healthy controls), the accuracy reached 70 %. We proposed a deep learning framework that can effectively classify rMDD and 33 identify the altered FC associated with rMDD. Our study may reveal changes in brain function 34 associated with rMDD and provide assistance for the diagnosis and treatment of rMDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
angel完成签到,获得积分10
刚刚
常常完成签到,获得积分10
刚刚
竹子发布了新的文献求助10
1秒前
包凡之完成签到,获得积分10
1秒前
519完成签到,获得积分10
1秒前
SYLH应助化学采纳,获得10
1秒前
2秒前
伊一完成签到,获得积分10
2秒前
隐形曼青应助科研辣椒采纳,获得10
2秒前
jackbauer完成签到,获得积分10
3秒前
Aurora发布了新的文献求助10
3秒前
朱洛尘发布了新的文献求助10
4秒前
风雅发布了新的文献求助10
4秒前
酷波er应助魔幻的雁兰采纳,获得10
5秒前
研友_LJbNdL完成签到,获得积分10
5秒前
堀川美嘉kk完成签到,获得积分10
6秒前
zumrat发布了新的文献求助30
7秒前
cathy-w完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助zhurui采纳,获得10
9秒前
小艳发布了新的文献求助10
10秒前
glay完成签到 ,获得积分10
11秒前
11秒前
CipherSage应助嗷嗷采纳,获得10
11秒前
12秒前
12秒前
Hello应助DK不吃榴莲233采纳,获得10
13秒前
明灯三千完成签到,获得积分10
13秒前
flance发布了新的文献求助10
13秒前
冥月发布了新的文献求助10
13秒前
13秒前
13秒前
幸福妙柏完成签到 ,获得积分10
13秒前
14秒前
希望天下0贩的0应助hxldsb采纳,获得30
14秒前
希望天下0贩的0应助小美采纳,获得10
14秒前
14秒前
还在吗完成签到,获得积分10
15秒前
x笑一发布了新的文献求助20
15秒前
yuw完成签到 ,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594