亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Auditory-circuit-motivated deep network with application to short-term electricity price forecasting

计算机科学 深度学习 期限(时间) 流程图 人工智能 工程类 电气工程 物理 量子力学 程序设计语言
作者
Han Wu,Yan Liang,Xiao‐Zhi Gao,Pei Du
出处
期刊:Energy [Elsevier BV]
卷期号:288: 129729-129729 被引量:4
标识
DOI:10.1016/j.energy.2023.129729
摘要

Reliable electricity price forecasts are of great importance to operators and participants in power markets. However, due to mixing effects of various factors, electricity price fluctuations are too complex to extract hidden features for accurately modelling. Additionally, biologically-inspired ideas are promising in significantly improving the performance and rationality of deep forecasting networks. Based on the fact that the auditory system effectively handles complex sound signals with amplitude, frequency and wavelength characteristics, this paper explores an auditory-circuit-motivated deep network with three following modules for forecasting short-term electricity prices. Specifically, the coding module imitates that left and right ears receive the sound and convert it into electric signals in parallel, and codes the input electricity prices into multiple valuable features, improving the feature integrity and model stability. The analysis module imitates that the left and right hemispheres integrate and handle electric signals to produce higher auditory information, and captures nonlinear and short-term dependencies via stacking convolutional and gating operations. The forecasting module imitates that the high-level brain region pays attention to the external environment based on higher auditory information, and generates final forecasts via the attention mechanism. Based on the cooperation of the above three modules, the proposed deep network mimics the flowchart, structures and functions, thereby inheriting superior handling capability of the auditory circuit. Experiment results under two real-world sets show that the proposed deep network is superior to 13 baselines, and improves the mean absolute error by averages of 14.7 % and 20.6 % in normal parts, 12.9 % and 23.4 % in high-fluctuation parts, and 16.1 % and 16.2 % in peak-low parts, which is an effective supplementary model for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
14秒前
CATH完成签到 ,获得积分10
15秒前
19秒前
zhanghao发布了新的文献求助10
19秒前
Hillson完成签到,获得积分10
28秒前
糯糯完成签到 ,获得积分10
37秒前
58秒前
自由飞阳完成签到,获得积分10
1分钟前
小羡完成签到 ,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
aDou完成签到 ,获得积分10
1分钟前
George完成签到,获得积分10
1分钟前
oscar发布了新的文献求助10
1分钟前
oscar完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
疯狂的自行车完成签到,获得积分20
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
我睡觉不会困12138完成签到 ,获得积分10
4分钟前
脑洞疼应助xiongdi521采纳,获得10
4分钟前
阿泽完成签到 ,获得积分10
4分钟前
疯狂的自行车关注了科研通微信公众号
4分钟前
kohu完成签到,获得积分10
4分钟前
4分钟前
kohu发布了新的文献求助10
4分钟前
5分钟前
正直的松鼠完成签到 ,获得积分10
5分钟前
核桃发布了新的文献求助10
6分钟前
Xw关闭了Xw文献求助
6分钟前
6分钟前
Xw关闭了Xw文献求助
6分钟前
6分钟前
Swear完成签到 ,获得积分10
6分钟前
勤恳冰淇淋完成签到 ,获得积分10
7分钟前
7分钟前
El发布了新的文献求助10
7分钟前
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990075
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256369
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228