Auditory-circuit-motivated deep network with application to short-term electricity price forecasting

计算机科学 深度学习 期限(时间) 流程图 人工智能 工程类 电气工程 物理 量子力学 程序设计语言
作者
Han Wu,Yan Liang,Xiao‐Zhi Gao,Pei Du
出处
期刊:Energy [Elsevier]
卷期号:288: 129729-129729 被引量:4
标识
DOI:10.1016/j.energy.2023.129729
摘要

Reliable electricity price forecasts are of great importance to operators and participants in power markets. However, due to mixing effects of various factors, electricity price fluctuations are too complex to extract hidden features for accurately modelling. Additionally, biologically-inspired ideas are promising in significantly improving the performance and rationality of deep forecasting networks. Based on the fact that the auditory system effectively handles complex sound signals with amplitude, frequency and wavelength characteristics, this paper explores an auditory-circuit-motivated deep network with three following modules for forecasting short-term electricity prices. Specifically, the coding module imitates that left and right ears receive the sound and convert it into electric signals in parallel, and codes the input electricity prices into multiple valuable features, improving the feature integrity and model stability. The analysis module imitates that the left and right hemispheres integrate and handle electric signals to produce higher auditory information, and captures nonlinear and short-term dependencies via stacking convolutional and gating operations. The forecasting module imitates that the high-level brain region pays attention to the external environment based on higher auditory information, and generates final forecasts via the attention mechanism. Based on the cooperation of the above three modules, the proposed deep network mimics the flowchart, structures and functions, thereby inheriting superior handling capability of the auditory circuit. Experiment results under two real-world sets show that the proposed deep network is superior to 13 baselines, and improves the mean absolute error by averages of 14.7 % and 20.6 % in normal parts, 12.9 % and 23.4 % in high-fluctuation parts, and 16.1 % and 16.2 % in peak-low parts, which is an effective supplementary model for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
参数估计完成签到,获得积分10
1秒前
Rukia完成签到,获得积分10
1秒前
大模型应助电池高手采纳,获得10
1秒前
1秒前
wakeeeeeee完成签到,获得积分10
1秒前
鱼香丸子完成签到,获得积分10
2秒前
blue发布了新的文献求助10
2秒前
Maestro_S应助十八采纳,获得20
2秒前
2秒前
超级无敌暴龙战士完成签到,获得积分10
3秒前
英俊的铭应助动人的铃铛采纳,获得10
3秒前
星辰大海应助小巧蛋挞采纳,获得10
3秒前
情怀应助暴躁的信封采纳,获得10
4秒前
瘦瘦含芙完成签到,获得积分10
5秒前
体贴电源完成签到,获得积分10
5秒前
5秒前
WKK完成签到,获得积分10
5秒前
洋芋完成签到,获得积分10
6秒前
独特的靖儿关注了科研通微信公众号
7秒前
MIMIXUAN发布了新的文献求助10
7秒前
yufanhui应助WXJ采纳,获得10
7秒前
wtjjjjjj完成签到,获得积分10
11秒前
11秒前
桐桐应助Leoling采纳,获得10
12秒前
Zhang发布了新的文献求助10
12秒前
嗯哼应助耍酷大炮采纳,获得20
13秒前
13秒前
14秒前
在水一方应助yi采纳,获得10
15秒前
善学以致用应助指定能行采纳,获得10
15秒前
YaoHui完成签到,获得积分10
16秒前
18秒前
bkagyin应助徐徐采纳,获得10
18秒前
Zczzx完成签到,获得积分10
18秒前
MaRt111n发布了新的文献求助10
18秒前
善学以致用应助ss采纳,获得10
19秒前
小郭完成签到,获得积分10
19秒前
19秒前
端庄的豆芽完成签到,获得积分10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157055
求助须知:如何正确求助?哪些是违规求助? 2808405
关于积分的说明 7877451
捐赠科研通 2466898
什么是DOI,文献DOI怎么找? 1313069
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919