Auditory-circuit-motivated deep network with application to short-term electricity price forecasting

计算机科学 深度学习 期限(时间) 流程图 人工智能 工程类 电气工程 量子力学 物理 程序设计语言
作者
Han Wu,Yan Liang,Xiao‐Zhi Gao,Pei Du
出处
期刊:Energy [Elsevier BV]
卷期号:288: 129729-129729 被引量:4
标识
DOI:10.1016/j.energy.2023.129729
摘要

Reliable electricity price forecasts are of great importance to operators and participants in power markets. However, due to mixing effects of various factors, electricity price fluctuations are too complex to extract hidden features for accurately modelling. Additionally, biologically-inspired ideas are promising in significantly improving the performance and rationality of deep forecasting networks. Based on the fact that the auditory system effectively handles complex sound signals with amplitude, frequency and wavelength characteristics, this paper explores an auditory-circuit-motivated deep network with three following modules for forecasting short-term electricity prices. Specifically, the coding module imitates that left and right ears receive the sound and convert it into electric signals in parallel, and codes the input electricity prices into multiple valuable features, improving the feature integrity and model stability. The analysis module imitates that the left and right hemispheres integrate and handle electric signals to produce higher auditory information, and captures nonlinear and short-term dependencies via stacking convolutional and gating operations. The forecasting module imitates that the high-level brain region pays attention to the external environment based on higher auditory information, and generates final forecasts via the attention mechanism. Based on the cooperation of the above three modules, the proposed deep network mimics the flowchart, structures and functions, thereby inheriting superior handling capability of the auditory circuit. Experiment results under two real-world sets show that the proposed deep network is superior to 13 baselines, and improves the mean absolute error by averages of 14.7 % and 20.6 % in normal parts, 12.9 % and 23.4 % in high-fluctuation parts, and 16.1 % and 16.2 % in peak-low parts, which is an effective supplementary model for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知行合一完成签到 ,获得积分10
刚刚
阿翼完成签到 ,获得积分10
刚刚
星期天不上发条完成签到 ,获得积分10
刚刚
华仔应助沈彬彬采纳,获得10
刚刚
1秒前
blhbpjn发布了新的文献求助10
1秒前
1秒前
秋石完成签到,获得积分10
2秒前
2秒前
一阳完成签到,获得积分10
2秒前
小四适小鱼儿完成签到,获得积分10
2秒前
2秒前
程青青发布了新的文献求助10
2秒前
田様应助QY采纳,获得10
2秒前
阿巴阿巴完成签到,获得积分10
2秒前
WW发布了新的文献求助10
2秒前
叶绿体不用吃饭完成签到,获得积分10
3秒前
3秒前
3秒前
取昵称好难完成签到,获得积分10
3秒前
3秒前
dameng139发布了新的文献求助30
3秒前
盒子完成签到 ,获得积分10
3秒前
liiy完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
呱呱发布了新的文献求助10
4秒前
一阳发布了新的文献求助10
5秒前
5秒前
5秒前
111完成签到 ,获得积分10
5秒前
文静听南发布了新的文献求助10
6秒前
Linson发布了新的文献求助10
6秒前
6秒前
hunter发布了新的文献求助10
6秒前
科研通AI2S应助李浩生采纳,获得10
6秒前
7秒前
Wenna发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257519
求助须知:如何正确求助?哪些是违规求助? 4419599
关于积分的说明 13756934
捐赠科研通 4292916
什么是DOI,文献DOI怎么找? 2355711
邀请新用户注册赠送积分活动 1352144
关于科研通互助平台的介绍 1312991