Auditory-circuit-motivated deep network with application to short-term electricity price forecasting

计算机科学 深度学习 期限(时间) 流程图 人工智能 工程类 电气工程 量子力学 物理 程序设计语言
作者
Han Wu,Yan Liang,Xiao‐Zhi Gao,Pei Du
出处
期刊:Energy [Elsevier BV]
卷期号:288: 129729-129729 被引量:4
标识
DOI:10.1016/j.energy.2023.129729
摘要

Reliable electricity price forecasts are of great importance to operators and participants in power markets. However, due to mixing effects of various factors, electricity price fluctuations are too complex to extract hidden features for accurately modelling. Additionally, biologically-inspired ideas are promising in significantly improving the performance and rationality of deep forecasting networks. Based on the fact that the auditory system effectively handles complex sound signals with amplitude, frequency and wavelength characteristics, this paper explores an auditory-circuit-motivated deep network with three following modules for forecasting short-term electricity prices. Specifically, the coding module imitates that left and right ears receive the sound and convert it into electric signals in parallel, and codes the input electricity prices into multiple valuable features, improving the feature integrity and model stability. The analysis module imitates that the left and right hemispheres integrate and handle electric signals to produce higher auditory information, and captures nonlinear and short-term dependencies via stacking convolutional and gating operations. The forecasting module imitates that the high-level brain region pays attention to the external environment based on higher auditory information, and generates final forecasts via the attention mechanism. Based on the cooperation of the above three modules, the proposed deep network mimics the flowchart, structures and functions, thereby inheriting superior handling capability of the auditory circuit. Experiment results under two real-world sets show that the proposed deep network is superior to 13 baselines, and improves the mean absolute error by averages of 14.7 % and 20.6 % in normal parts, 12.9 % and 23.4 % in high-fluctuation parts, and 16.1 % and 16.2 % in peak-low parts, which is an effective supplementary model for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助眼睛大的鑫磊采纳,获得10
刚刚
Xixicccccccc发布了新的文献求助10
1秒前
2秒前
芬芬完成签到,获得积分10
2秒前
3秒前
mukji发布了新的文献求助10
3秒前
morlison完成签到,获得积分10
4秒前
defef完成签到,获得积分10
4秒前
hoeny发布了新的文献求助10
4秒前
英勇的沛春完成签到 ,获得积分10
5秒前
HLJemm发布了新的文献求助10
7秒前
虚幻双双发布了新的文献求助10
8秒前
8秒前
8秒前
Hello应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
salan应助科研通管家采纳,获得20
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
10秒前
komatsumiho完成签到,获得积分10
10秒前
11秒前
Ava应助暴躁的酸奶采纳,获得10
11秒前
子车茗应助xiaoxiao采纳,获得10
11秒前
科研通AI5应助鲸鱼采纳,获得10
11秒前
11秒前
12秒前
李拾舟发布了新的文献求助10
13秒前
科研通AI5应助饭饭采纳,获得10
13秒前
HLJemm完成签到,获得积分10
14秒前
ww关闭了ww文献求助
15秒前
Wesily发布了新的文献求助10
15秒前
百浪多息完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537858
求助须知:如何正确求助?哪些是违规求助? 3972615
关于积分的说明 12306359
捐赠科研通 3639399
什么是DOI,文献DOI怎么找? 2003835
邀请新用户注册赠送积分活动 1039170
科研通“疑难数据库(出版商)”最低求助积分说明 928586