Auditory-circuit-motivated deep network with application to short-term electricity price forecasting

计算机科学 深度学习 期限(时间) 流程图 人工智能 工程类 电气工程 量子力学 物理 程序设计语言
作者
Han Wu,Yan Liang,Xiao‐Zhi Gao,Pei Du
出处
期刊:Energy [Elsevier]
卷期号:288: 129729-129729 被引量:11
标识
DOI:10.1016/j.energy.2023.129729
摘要

Reliable electricity price forecasts are of great importance to operators and participants in power markets. However, due to mixing effects of various factors, electricity price fluctuations are too complex to extract hidden features for accurately modelling. Additionally, biologically-inspired ideas are promising in significantly improving the performance and rationality of deep forecasting networks. Based on the fact that the auditory system effectively handles complex sound signals with amplitude, frequency and wavelength characteristics, this paper explores an auditory-circuit-motivated deep network with three following modules for forecasting short-term electricity prices. Specifically, the coding module imitates that left and right ears receive the sound and convert it into electric signals in parallel, and codes the input electricity prices into multiple valuable features, improving the feature integrity and model stability. The analysis module imitates that the left and right hemispheres integrate and handle electric signals to produce higher auditory information, and captures nonlinear and short-term dependencies via stacking convolutional and gating operations. The forecasting module imitates that the high-level brain region pays attention to the external environment based on higher auditory information, and generates final forecasts via the attention mechanism. Based on the cooperation of the above three modules, the proposed deep network mimics the flowchart, structures and functions, thereby inheriting superior handling capability of the auditory circuit. Experiment results under two real-world sets show that the proposed deep network is superior to 13 baselines, and improves the mean absolute error by averages of 14.7 % and 20.6 % in normal parts, 12.9 % and 23.4 % in high-fluctuation parts, and 16.1 % and 16.2 % in peak-low parts, which is an effective supplementary model for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mingjing完成签到 ,获得积分10
1秒前
嘿嘿应助小波波波采纳,获得30
1秒前
万能图书馆应助汴汴采纳,获得10
2秒前
嘿嘿应助Tree_采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
只争朝夕完成签到 ,获得积分10
5秒前
粗心的谷蕊完成签到,获得积分10
8秒前
椒盐土豆完成签到,获得积分10
8秒前
黑闷蛋发布了新的文献求助10
9秒前
9秒前
Jasper应助Cmqq采纳,获得10
10秒前
12秒前
李爱国应助xlll采纳,获得10
12秒前
椒盐土豆发布了新的文献求助10
13秒前
13秒前
caster1发布了新的文献求助10
17秒前
今后应助大意的天亦采纳,获得10
17秒前
浮荒完成签到,获得积分20
18秒前
21秒前
黑闷蛋完成签到,获得积分10
21秒前
熠旅完成签到,获得积分10
22秒前
23秒前
马霄鑫完成签到,获得积分10
24秒前
24秒前
24秒前
赘婿应助veblem采纳,获得10
24秒前
优雅的白安完成签到,获得积分10
25秒前
25秒前
27秒前
自觉从筠完成签到 ,获得积分10
27秒前
马霄鑫发布了新的文献求助10
28秒前
wwwjy完成签到 ,获得积分10
28秒前
28秒前
ceeray23发布了新的文献求助20
29秒前
咸鱼发布了新的文献求助10
29秒前
29秒前
Ride发布了新的文献求助10
29秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599456
求助须知:如何正确求助?哪些是违规求助? 4685036
关于积分的说明 14837601
捐赠科研通 4668162
什么是DOI,文献DOI怎么找? 2537964
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783