An Uncertainty-Guided Deep Learning Method Facilitates Rapid Screening of CYP3A4 Inhibitors

假阳性悖论 计算机科学 CYP3A4型 排名(信息检索) 数据挖掘 集合(抽象数据类型) 数量结构-活动关系 计算生物学 机器学习 化学 细胞色素P450 生物 生物化学 程序设计语言
作者
Ruixuan Wang,Zhikang Liu,Jia-Hao Gong,Qingping Zhou,Xiao‐Qing Guan,Guang‐Bo Ge
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (24): 7699-7710 被引量:10
标识
DOI:10.1021/acs.jcim.3c01241
摘要

Cytochrome P450 3A4 (CYP3A4), a prominent member of the P450 enzyme superfamily, plays a crucial role in metabolizing various xenobiotics, including over 50% of clinically significant drugs. Evaluating CYP3A4 inhibition before drug approval is essential to avoiding potentially harmful pharmacokinetic drug-drug interactions (DDIs) and adverse drug reactions (ADRs). Despite the development of several CYP inhibitor prediction models, the primary approach for screening CYP inhibitors still relies on experimental methods. This might stem from the limitations of existing models, which only provide deterministic classification outcomes instead of precise inhibition intensity (e.g., IC50) and often suffer from inadequate prediction reliability. To address this challenge, we propose an uncertainty-guided regression model to accurately predict the IC50 values of anti-CYP3A4 activities. First, a comprehensive data set of CYP3A4 inhibitors was compiled, consisting of 27,045 compounds with classification labels, including 4395 compounds with explicit IC50 values. Second, by integrating the predictions of the classification model trained on a larger data set and introducing an evidential uncertainty method to rank prediction confidence, we obtained a high-precision and reliable regression model. Finally, we use the evidential uncertainty values as a trustworthy indicator to perform a virtual screening of an in-house compound set. The in vitro experiment results revealed that this new indicator significantly improved the hit ratio and reduced false positives among the top-ranked compounds. Specifically, among the top 20 compounds ranked with uncertainty, 15 compounds were identified as novel CYP3A4 inhibitors, and three of them exhibited activities less than 1 μM. In summary, our findings highlight the effectiveness of incorporating uncertainty in compound screening, providing a promising strategy for drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗wq发布了新的文献求助10
1秒前
怕黑雨竹完成签到,获得积分10
1秒前
沉静从蓉发布了新的文献求助10
1秒前
1秒前
2秒前
默默蘑菇完成签到,获得积分10
2秒前
邓炎林发布了新的文献求助10
2秒前
2秒前
阿浩完成签到,获得积分10
3秒前
蒙蒙完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
cchenn发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
ykk完成签到 ,获得积分10
5秒前
Orange应助liuyingjuan829采纳,获得10
5秒前
5秒前
李科含完成签到,获得积分20
5秒前
6秒前
遇见发布了新的文献求助10
6秒前
yfn发布了新的文献求助10
6秒前
h'c'z发布了新的文献求助10
6秒前
我是老大应助悲凉的便当采纳,获得10
6秒前
卷羊发布了新的文献求助10
7秒前
五毛完成签到,获得积分10
8秒前
hfhd完成签到,获得积分20
8秒前
coco完成签到,获得积分10
8秒前
帅气的馒头应助发财采纳,获得10
8秒前
充电宝应助Sandewna采纳,获得10
9秒前
香蕉诗蕊应助帅气善斓采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836