An Uncertainty-Guided Deep Learning Method Facilitates Rapid Screening of CYP3A4 Inhibitors

假阳性悖论 计算机科学 CYP3A4型 排名(信息检索) 数据挖掘 集合(抽象数据类型) 数量结构-活动关系 计算生物学 机器学习 化学 细胞色素P450 生物 生物化学 程序设计语言
作者
Ruixuan Wang,Zhikang Liu,Jia-Hao Gong,Qingping Zhou,Xiao‐Qing Guan,Guang‐Bo Ge
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (24): 7699-7710 被引量:10
标识
DOI:10.1021/acs.jcim.3c01241
摘要

Cytochrome P450 3A4 (CYP3A4), a prominent member of the P450 enzyme superfamily, plays a crucial role in metabolizing various xenobiotics, including over 50% of clinically significant drugs. Evaluating CYP3A4 inhibition before drug approval is essential to avoiding potentially harmful pharmacokinetic drug-drug interactions (DDIs) and adverse drug reactions (ADRs). Despite the development of several CYP inhibitor prediction models, the primary approach for screening CYP inhibitors still relies on experimental methods. This might stem from the limitations of existing models, which only provide deterministic classification outcomes instead of precise inhibition intensity (e.g., IC50) and often suffer from inadequate prediction reliability. To address this challenge, we propose an uncertainty-guided regression model to accurately predict the IC50 values of anti-CYP3A4 activities. First, a comprehensive data set of CYP3A4 inhibitors was compiled, consisting of 27,045 compounds with classification labels, including 4395 compounds with explicit IC50 values. Second, by integrating the predictions of the classification model trained on a larger data set and introducing an evidential uncertainty method to rank prediction confidence, we obtained a high-precision and reliable regression model. Finally, we use the evidential uncertainty values as a trustworthy indicator to perform a virtual screening of an in-house compound set. The in vitro experiment results revealed that this new indicator significantly improved the hit ratio and reduced false positives among the top-ranked compounds. Specifically, among the top 20 compounds ranked with uncertainty, 15 compounds were identified as novel CYP3A4 inhibitors, and three of them exhibited activities less than 1 μM. In summary, our findings highlight the effectiveness of incorporating uncertainty in compound screening, providing a promising strategy for drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怂怂发布了新的文献求助10
刚刚
1秒前
OMO发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
高硕发布了新的文献求助10
2秒前
2秒前
脑洞疼应助猪猪猪采纳,获得10
3秒前
哈罗发布了新的文献求助10
3秒前
小鲨鱼完成签到,获得积分10
3秒前
XEZ发布了新的文献求助10
4秒前
上官若男应助www采纳,获得10
4秒前
niudayun给niudayun的求助进行了留言
4秒前
炙热尔阳发布了新的文献求助10
4秒前
4秒前
科研通AI6应助榕俊采纳,获得10
5秒前
CipherSage应助榕俊采纳,获得10
5秒前
斯文败类应助榕俊采纳,获得10
5秒前
Rachel完成签到,获得积分10
5秒前
fei发布了新的文献求助200
5秒前
5秒前
5秒前
5秒前
坚定剑成发布了新的文献求助10
6秒前
思源应助xl采纳,获得10
6秒前
华仔应助bubble采纳,获得10
6秒前
善学以致用应助从容听南采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得20
7秒前
传奇3应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731