An Uncertainty-Guided Deep Learning Method Facilitates Rapid Screening of CYP3A4 Inhibitors

假阳性悖论 计算机科学 CYP3A4型 排名(信息检索) 数据挖掘 集合(抽象数据类型) 数量结构-活动关系 计算生物学 机器学习 化学 细胞色素P450 生物 生物化学 程序设计语言
作者
Ruixuan Wang,Zhikang Liu,Jia-Hao Gong,Qingping Zhou,Xiao‐Qing Guan,Guang‐Bo Ge
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (24): 7699-7710 被引量:4
标识
DOI:10.1021/acs.jcim.3c01241
摘要

Cytochrome P450 3A4 (CYP3A4), a prominent member of the P450 enzyme superfamily, plays a crucial role in metabolizing various xenobiotics, including over 50% of clinically significant drugs. Evaluating CYP3A4 inhibition before drug approval is essential to avoiding potentially harmful pharmacokinetic drug–drug interactions (DDIs) and adverse drug reactions (ADRs). Despite the development of several CYP inhibitor prediction models, the primary approach for screening CYP inhibitors still relies on experimental methods. This might stem from the limitations of existing models, which only provide deterministic classification outcomes instead of precise inhibition intensity (e.g., IC50) and often suffer from inadequate prediction reliability. To address this challenge, we propose an uncertainty-guided regression model to accurately predict the IC50 values of anti-CYP3A4 activities. First, a comprehensive data set of CYP3A4 inhibitors was compiled, consisting of 27,045 compounds with classification labels, including 4395 compounds with explicit IC50 values. Second, by integrating the predictions of the classification model trained on a larger data set and introducing an evidential uncertainty method to rank prediction confidence, we obtained a high-precision and reliable regression model. Finally, we use the evidential uncertainty values as a trustworthy indicator to perform a virtual screening of an in-house compound set. The in vitro experiment results revealed that this new indicator significantly improved the hit ratio and reduced false positives among the top-ranked compounds. Specifically, among the top 20 compounds ranked with uncertainty, 15 compounds were identified as novel CYP3A4 inhibitors, and three of them exhibited activities less than 1 μM. In summary, our findings highlight the effectiveness of incorporating uncertainty in compound screening, providing a promising strategy for drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
天天快乐应助迷路严青采纳,获得10
1秒前
2秒前
5秒前
Haha发布了新的文献求助10
5秒前
sunshine完成签到,获得积分10
5秒前
小斌完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
azen发布了新的文献求助10
6秒前
充电宝应助张凌志采纳,获得10
6秒前
小y发布了新的文献求助10
7秒前
Akim应助顺顺尼采纳,获得10
7秒前
wanci应助clp采纳,获得10
8秒前
在水一方应助张学友采纳,获得10
8秒前
Placebo关注了科研通微信公众号
8秒前
无花果应助研友_ZeoKYL采纳,获得10
8秒前
麦克尔完成签到,获得积分10
8秒前
顾瑞关注了科研通微信公众号
8秒前
搜集达人应助pkaq采纳,获得10
9秒前
科研通AI6应助YUYUYU采纳,获得10
10秒前
轻轻的吻完成签到 ,获得积分10
11秒前
123发布了新的文献求助10
11秒前
FashionBoy应助权_888采纳,获得10
11秒前
冷傲的如柏完成签到,获得积分10
13秒前
故意的鼠标完成签到,获得积分10
14秒前
传奇3应助常姗采纳,获得10
14秒前
粗犷的世平完成签到,获得积分10
14秒前
15秒前
15秒前
CodeCraft应助2123121321321采纳,获得10
16秒前
紫苏桃子姜完成签到,获得积分10
16秒前
李爱国应助lyz采纳,获得10
17秒前
azen完成签到,获得积分20
17秒前
完美世界应助HY采纳,获得10
18秒前
钟小熊完成签到,获得积分10
18秒前
18秒前
搜集达人应助秀莉采纳,获得10
18秒前
香蕉觅云应助威武的听露采纳,获得10
18秒前
RR完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954783
求助须知:如何正确求助?哪些是违规求助? 4217083
关于积分的说明 13122349
捐赠科研通 3999304
什么是DOI,文献DOI怎么找? 2188752
邀请新用户注册赠送积分活动 1203861
关于科研通互助平台的介绍 1116143