An Uncertainty-Guided Deep Learning Method Facilitates Rapid Screening of CYP3A4 Inhibitors

假阳性悖论 计算机科学 CYP3A4型 排名(信息检索) 数据挖掘 集合(抽象数据类型) 数量结构-活动关系 计算生物学 机器学习 化学 细胞色素P450 生物 生物化学 程序设计语言
作者
Ruixuan Wang,Zhikang Liu,Jia-Hao Gong,Qingping Zhou,Xiao‐Qing Guan,Guang‐Bo Ge
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (24): 7699-7710 被引量:4
标识
DOI:10.1021/acs.jcim.3c01241
摘要

Cytochrome P450 3A4 (CYP3A4), a prominent member of the P450 enzyme superfamily, plays a crucial role in metabolizing various xenobiotics, including over 50% of clinically significant drugs. Evaluating CYP3A4 inhibition before drug approval is essential to avoiding potentially harmful pharmacokinetic drug–drug interactions (DDIs) and adverse drug reactions (ADRs). Despite the development of several CYP inhibitor prediction models, the primary approach for screening CYP inhibitors still relies on experimental methods. This might stem from the limitations of existing models, which only provide deterministic classification outcomes instead of precise inhibition intensity (e.g., IC50) and often suffer from inadequate prediction reliability. To address this challenge, we propose an uncertainty-guided regression model to accurately predict the IC50 values of anti-CYP3A4 activities. First, a comprehensive data set of CYP3A4 inhibitors was compiled, consisting of 27,045 compounds with classification labels, including 4395 compounds with explicit IC50 values. Second, by integrating the predictions of the classification model trained on a larger data set and introducing an evidential uncertainty method to rank prediction confidence, we obtained a high-precision and reliable regression model. Finally, we use the evidential uncertainty values as a trustworthy indicator to perform a virtual screening of an in-house compound set. The in vitro experiment results revealed that this new indicator significantly improved the hit ratio and reduced false positives among the top-ranked compounds. Specifically, among the top 20 compounds ranked with uncertainty, 15 compounds were identified as novel CYP3A4 inhibitors, and three of them exhibited activities less than 1 μM. In summary, our findings highlight the effectiveness of incorporating uncertainty in compound screening, providing a promising strategy for drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123完成签到 ,获得积分10
刚刚
李不笑发布了新的文献求助10
刚刚
1秒前
牛牛的牛牛完成签到 ,获得积分10
1秒前
由醉香完成签到 ,获得积分10
2秒前
mengdewen发布了新的文献求助10
2秒前
2秒前
CHN发布了新的文献求助10
2秒前
3秒前
mnc发布了新的文献求助10
3秒前
lllx完成签到,获得积分10
4秒前
5yy发布了新的文献求助10
4秒前
4秒前
Miracle完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
段皖顺完成签到 ,获得积分10
6秒前
皮卡完成签到 ,获得积分10
6秒前
captain完成签到,获得积分10
7秒前
李健的小迷弟应助C1ng采纳,获得10
7秒前
Active完成签到,获得积分10
7秒前
8秒前
9秒前
酷波er应助CHN采纳,获得10
10秒前
kjc发布了新的文献求助20
10秒前
10秒前
走走发布了新的文献求助10
12秒前
13秒前
王卫完成签到,获得积分10
13秒前
14秒前
Lucas应助zyc采纳,获得10
14秒前
刘汉淼发布了新的文献求助10
15秒前
共享精神应助郑师傅采纳,获得10
15秒前
Akim应助林zp采纳,获得10
15秒前
天真不乐完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
18秒前
Lv发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420085
求助须知:如何正确求助?哪些是违规求助? 4535286
关于积分的说明 14149145
捐赠科研通 4452250
什么是DOI,文献DOI怎么找? 2442070
邀请新用户注册赠送积分活动 1433606
关于科研通互助平台的介绍 1410850