An Uncertainty-Guided Deep Learning Method Facilitates Rapid Screening of CYP3A4 Inhibitors

假阳性悖论 计算机科学 CYP3A4型 排名(信息检索) 数据挖掘 集合(抽象数据类型) 数量结构-活动关系 计算生物学 机器学习 化学 细胞色素P450 生物 生物化学 程序设计语言
作者
Ruixuan Wang,Zhikang Liu,Jia-Hao Gong,Qingping Zhou,Xiao‐Qing Guan,Guang‐Bo Ge
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (24): 7699-7710 被引量:4
标识
DOI:10.1021/acs.jcim.3c01241
摘要

Cytochrome P450 3A4 (CYP3A4), a prominent member of the P450 enzyme superfamily, plays a crucial role in metabolizing various xenobiotics, including over 50% of clinically significant drugs. Evaluating CYP3A4 inhibition before drug approval is essential to avoiding potentially harmful pharmacokinetic drug–drug interactions (DDIs) and adverse drug reactions (ADRs). Despite the development of several CYP inhibitor prediction models, the primary approach for screening CYP inhibitors still relies on experimental methods. This might stem from the limitations of existing models, which only provide deterministic classification outcomes instead of precise inhibition intensity (e.g., IC50) and often suffer from inadequate prediction reliability. To address this challenge, we propose an uncertainty-guided regression model to accurately predict the IC50 values of anti-CYP3A4 activities. First, a comprehensive data set of CYP3A4 inhibitors was compiled, consisting of 27,045 compounds with classification labels, including 4395 compounds with explicit IC50 values. Second, by integrating the predictions of the classification model trained on a larger data set and introducing an evidential uncertainty method to rank prediction confidence, we obtained a high-precision and reliable regression model. Finally, we use the evidential uncertainty values as a trustworthy indicator to perform a virtual screening of an in-house compound set. The in vitro experiment results revealed that this new indicator significantly improved the hit ratio and reduced false positives among the top-ranked compounds. Specifically, among the top 20 compounds ranked with uncertainty, 15 compounds were identified as novel CYP3A4 inhibitors, and three of them exhibited activities less than 1 μM. In summary, our findings highlight the effectiveness of incorporating uncertainty in compound screening, providing a promising strategy for drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助念念采纳,获得10
刚刚
1秒前
yizhiGao应助甜美不评采纳,获得10
1秒前
Lunwen发布了新的文献求助30
2秒前
大黄发布了新的文献求助10
2秒前
orixero应助舍予有服采纳,获得10
2秒前
科研小白发布了新的文献求助20
2秒前
3秒前
夹子方糖发布了新的文献求助10
5秒前
杨哈哈完成签到,获得积分10
5秒前
5秒前
zu关闭了zu文献求助
6秒前
大黄完成签到,获得积分10
7秒前
柯一一应助博ge采纳,获得10
8秒前
cuncun完成签到,获得积分10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
打打应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得30
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
无魇应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980258
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220452
捐赠科研通 3261658
什么是DOI,文献DOI怎么找? 1800882
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807234