材料科学
杰纳斯
蒸发
化学工程
海水淡化
纳米技术
蒸发器
水运
卤水
环境工程
环境科学
有机化学
热交换器
水流
机械工程
化学
工程类
生物化学
物理
膜
热力学
作者
Hao Li,Guoyun Tong,Aqiang Chu,Juanli Chen,Hongda Yang,Jing Fang,Zhengsheng Yang,Simin Liu,Liangliang Dong
出处
期刊:Nano Energy
[Elsevier]
日期:2024-03-11
卷期号:124: 109475-109475
被引量:9
标识
DOI:10.1016/j.nanoen.2024.109475
摘要
Solar-driven interfacial evaporation technology stands out as a promising solution for sustainable freshwater production. To achieve sustained and efficient water evaporation, it is crucial to carefully modulate the distribution of water content within the solar evaporator. In this study, a novel light-temperature responsive composite hydrogel-based solar evaporator was successful constructed. This involved the incorporation of a hydrophilic backbone (polyacrylamide) and a highly efficient solar absorber (multi-walled carbon nanotubes) into a temperature-sensitive hydrogel polymer backbone (poly (N, N-diethylacrylamide)). Due to its low critical solution temperature, the evaporator can undergo a hydrophilic/hydrophobic phase transition alternating day and night conditions. In natural sunlight, the upper hydrogel evaporation region is rendered hydrophobic, minimizing heat loss and preventing salt crystallization. Simultaneously, the bottom water delivery region is hydrophilic to ensure sufficient water supply. At night, the evaporator absorbs water and dissolves, thereby facilitating the rapid return of highly concentrated brine. Leveraging the spontaneously formed Janus structure, the photo-hydrothermal hydrogel achieves an impressive evaporation rate of 2.74 kg m-2 h-1 and exhibits excellent salt resistance. The notable water evaporation performance and robust salt resistance provide exciting possibilities for achieving ultrafast solar water purification.
科研通智能强力驱动
Strongly Powered by AbleSci AI