Comparison of different open‐source Digital Elevation Models for landslide susceptibility mapping

数字高程模型 航天飞机雷达地形任务 地质学 先进星载热发射反射辐射计 仰角(弹道) 山崩 归一化差异植被指数 地貌学 曲率 雷达 遥感 环境科学 气候变化 计算机科学 几何学 数学 海洋学 电信
作者
Dingyang Lu,Guoan Tang,Ge Yan,Fengyize Yu,Xiaofen Lin
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (4): 1411-1427 被引量:5
标识
DOI:10.1002/esp.5777
摘要

Abstract In this study, the application of open‐source digital elevation model (DEM) is explored for regional landslide susceptibility mapping (LSM), and the potential impact of different DEM choices on the mapping accuracy is also examined. With the advancements in remote sensing technology, an increasing number of global open‐source DEMs have been available, with improvement in the accuracy. However, the latest released data are rarely evaluated in LSM research. In this paper, DEM‐based factors, including elevation, aspect, slope, plan curvature and profile curvature, were generated from seven open‐source DEMs, including Advanced Spaceborne Thermal Emission and Reflection (ASTER) V2, ASTERV3, ALOS World 3D‐30 m (AW3D30), Copernicus DEM 30 m (COP) Forest and Buildings removed Copernicus DEM (FABDEM), NASADEM, and Shuttle Radar Topography Mission (SRTM). DEM‐based factors were coupled with the distance to road, distance to river, land use, lithology, rain and normalized difference vegetation index (NDVI). The significant difference between DEMs is determined by comparing the area proportion. Slope, plane curvature and profile curvature are found to have a maximum difference of 15%–20%. Then, K‐Nearest Neighbours (KNN) and Random Forest (RF) were used to predict landslide susceptibility with two sampling methods, namely, 70% for training and 30% for testing (S1); 67% for training and 33% for testing (S2). For KNN with S1, the prediction rate is range from 0.8299 to 0.8701, with a difference of 0.0402. The difference of prediction rate is decreased to 0.0207 for S2 and 0.0258 for RF. COP has the highest prediction rate of 0.8701, 0.9254 and 0.9461 for KNN with S1 and RF with S1 and S2, respectively. ASTERV2 is the worst with prediction rate of 0.8897 and 0.8996 for KNN with S2 and RF with S1, respectively. The research result provides valuable insights for the selection of open‐source DEMs in future LSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江川完成签到,获得积分10
1秒前
田様应助灵灵妖采纳,获得10
1秒前
2秒前
邢大志完成签到,获得积分20
2秒前
想要发文章完成签到,获得积分10
2秒前
Lchemistry完成签到,获得积分10
3秒前
3秒前
唯博完成签到 ,获得积分10
4秒前
李爱国应助luraaaa采纳,获得10
4秒前
xrt完成签到,获得积分10
4秒前
蓝茶发布了新的文献求助20
4秒前
5秒前
5秒前
凶狠的翅膀完成签到,获得积分10
5秒前
holland完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助孙浩洋采纳,获得10
5秒前
yr888完成签到,获得积分10
5秒前
邢大志发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
huijuan完成签到,获得积分10
7秒前
钟冬燕完成签到,获得积分10
7秒前
华仔应助ji采纳,获得10
7秒前
evacqy完成签到,获得积分10
8秒前
科研渣渣完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
独特的从露完成签到,获得积分10
9秒前
tongttt完成签到,获得积分10
9秒前
lunlun完成签到,获得积分10
10秒前
爆米花应助与非采纳,获得10
10秒前
10秒前
whc121完成签到,获得积分10
11秒前
wxs完成签到,获得积分10
11秒前
汉堡包应助标致的冷梅采纳,获得10
11秒前
绿L完成签到,获得积分10
11秒前
脑洞疼应助遇见采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836