Comparison of different open‐source Digital Elevation Models for landslide susceptibility mapping

数字高程模型 航天飞机雷达地形任务 地质学 先进星载热发射反射辐射计 仰角(弹道) 山崩 归一化差异植被指数 地貌学 曲率 雷达 遥感 环境科学 气候变化 计算机科学 几何学 数学 海洋学 电信
作者
Dingyang Lu,Guoan Tang,Ge Yan,Fengyize Yu,Xiaofen Lin
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (4): 1411-1427 被引量:5
标识
DOI:10.1002/esp.5777
摘要

Abstract In this study, the application of open‐source digital elevation model (DEM) is explored for regional landslide susceptibility mapping (LSM), and the potential impact of different DEM choices on the mapping accuracy is also examined. With the advancements in remote sensing technology, an increasing number of global open‐source DEMs have been available, with improvement in the accuracy. However, the latest released data are rarely evaluated in LSM research. In this paper, DEM‐based factors, including elevation, aspect, slope, plan curvature and profile curvature, were generated from seven open‐source DEMs, including Advanced Spaceborne Thermal Emission and Reflection (ASTER) V2, ASTERV3, ALOS World 3D‐30 m (AW3D30), Copernicus DEM 30 m (COP) Forest and Buildings removed Copernicus DEM (FABDEM), NASADEM, and Shuttle Radar Topography Mission (SRTM). DEM‐based factors were coupled with the distance to road, distance to river, land use, lithology, rain and normalized difference vegetation index (NDVI). The significant difference between DEMs is determined by comparing the area proportion. Slope, plane curvature and profile curvature are found to have a maximum difference of 15%–20%. Then, K‐Nearest Neighbours (KNN) and Random Forest (RF) were used to predict landslide susceptibility with two sampling methods, namely, 70% for training and 30% for testing (S1); 67% for training and 33% for testing (S2). For KNN with S1, the prediction rate is range from 0.8299 to 0.8701, with a difference of 0.0402. The difference of prediction rate is decreased to 0.0207 for S2 and 0.0258 for RF. COP has the highest prediction rate of 0.8701, 0.9254 and 0.9461 for KNN with S1 and RF with S1 and S2, respectively. ASTERV2 is the worst with prediction rate of 0.8897 and 0.8996 for KNN with S2 and RF with S1, respectively. The research result provides valuable insights for the selection of open‐source DEMs in future LSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟图图发布了新的文献求助10
1秒前
我我轻轻发布了新的文献求助10
1秒前
2秒前
所所应助默默白曼采纳,获得10
3秒前
妮妮妮完成签到 ,获得积分10
3秒前
4秒前
白色风车完成签到,获得积分10
4秒前
所所应助韩雨涛采纳,获得10
5秒前
7秒前
7秒前
嘟嘟图图完成签到,获得积分10
8秒前
三岁半完成签到 ,获得积分10
8秒前
完美的水杯完成签到 ,获得积分10
9秒前
朱瑶君完成签到,获得积分10
10秒前
12秒前
13秒前
小蘑菇应助hv采纳,获得10
13秒前
Deyong发布了新的文献求助10
13秒前
今后应助幽默的幻柏采纳,获得10
15秒前
善学以致用应助杨榆藤采纳,获得10
15秒前
长言完成签到 ,获得积分10
16秒前
17秒前
焦星星发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
19秒前
奶油泡fu完成签到 ,获得积分10
20秒前
深情安青应助忧郁的向雁采纳,获得10
20秒前
研友Zby14n发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
charming完成签到 ,获得积分10
23秒前
叮当发布了新的文献求助10
23秒前
Crane发布了新的文献求助10
24秒前
齐乾宁完成签到,获得积分10
24秒前
24秒前
风筝鱼完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908652
求助须知:如何正确求助?哪些是违规求助? 4185172
关于积分的说明 12997027
捐赠科研通 3951974
什么是DOI,文献DOI怎么找? 2167233
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092321