Comparison of different open‐source Digital Elevation Models for landslide susceptibility mapping

数字高程模型 航天飞机雷达地形任务 地质学 先进星载热发射反射辐射计 仰角(弹道) 山崩 归一化差异植被指数 地貌学 曲率 雷达 遥感 气候变化 计算机科学 几何学 数学 电信 海洋学
作者
Dingyang Lu,Guoan Tang,Ge Yan,Fengyize Yu,Xiaofen Lin
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (4): 1411-1427 被引量:3
标识
DOI:10.1002/esp.5777
摘要

Abstract In this study, the application of open‐source digital elevation model (DEM) is explored for regional landslide susceptibility mapping (LSM), and the potential impact of different DEM choices on the mapping accuracy is also examined. With the advancements in remote sensing technology, an increasing number of global open‐source DEMs have been available, with improvement in the accuracy. However, the latest released data are rarely evaluated in LSM research. In this paper, DEM‐based factors, including elevation, aspect, slope, plan curvature and profile curvature, were generated from seven open‐source DEMs, including Advanced Spaceborne Thermal Emission and Reflection (ASTER) V2, ASTERV3, ALOS World 3D‐30 m (AW3D30), Copernicus DEM 30 m (COP) Forest and Buildings removed Copernicus DEM (FABDEM), NASADEM, and Shuttle Radar Topography Mission (SRTM). DEM‐based factors were coupled with the distance to road, distance to river, land use, lithology, rain and normalized difference vegetation index (NDVI). The significant difference between DEMs is determined by comparing the area proportion. Slope, plane curvature and profile curvature are found to have a maximum difference of 15%–20%. Then, K‐Nearest Neighbours (KNN) and Random Forest (RF) were used to predict landslide susceptibility with two sampling methods, namely, 70% for training and 30% for testing (S1); 67% for training and 33% for testing (S2). For KNN with S1, the prediction rate is range from 0.8299 to 0.8701, with a difference of 0.0402. The difference of prediction rate is decreased to 0.0207 for S2 and 0.0258 for RF. COP has the highest prediction rate of 0.8701, 0.9254 and 0.9461 for KNN with S1 and RF with S1 and S2, respectively. ASTERV2 is the worst with prediction rate of 0.8897 and 0.8996 for KNN with S2 and RF with S1, respectively. The research result provides valuable insights for the selection of open‐source DEMs in future LSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lemon发布了新的文献求助10
刚刚
2秒前
2秒前
yhtu完成签到,获得积分10
2秒前
sunyt完成签到,获得积分10
3秒前
小笼包完成签到 ,获得积分10
6秒前
7秒前
tdtk发布了新的文献求助10
7秒前
聪明藏今完成签到,获得积分10
7秒前
8秒前
打打应助罗晓倩采纳,获得10
8秒前
9秒前
9秒前
泯珉发布了新的文献求助10
11秒前
允许一切发生完成签到,获得积分10
12秒前
14秒前
14秒前
qwt00发布了新的文献求助10
14秒前
今后应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
Theprisoners应助科研通管家采纳,获得20
15秒前
yar应助科研通管家采纳,获得10
15秒前
Jasper应助琳琳琳琳565采纳,获得10
15秒前
泯珉完成签到,获得积分10
16秒前
vigour完成签到 ,获得积分10
17秒前
帅气的璎发布了新的文献求助10
20秒前
饱满以松完成签到 ,获得积分10
21秒前
田田田田完成签到,获得积分10
22秒前
qwt00完成签到,获得积分10
23秒前
不想做实验完成签到,获得积分10
23秒前
24秒前
Elvira完成签到,获得积分10
26秒前
怕孤独的如凡完成签到 ,获得积分10
26秒前
爆米花应助鲜于灵竹采纳,获得10
27秒前
李爱国应助帅气的璎采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999444
求助须知:如何正确求助?哪些是违规求助? 3538780
关于积分的说明 11275184
捐赠科研通 3277604
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883977
科研通“疑难数据库(出版商)”最低求助积分说明 810111