Vision-Based Detection Method for Construction Site Monitoring by Integrating Data Augmentation and Semisupervised Learning

计算机科学 人工智能 机器学习 计算机视觉
作者
Mengnan Shi,Chen Chen,Bo Xiao,JoonOh Seo
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (5) 被引量:1
标识
DOI:10.1061/jcemd4.coeng-14388
摘要

Training deep learning models for vision-based monitoring of construction sites usually requires a large amount of labeled data. Semisupervised learning methods can efficiently obtain unlabeled data with substantial cost savings. Thus, this paper proposes a semisupervised object detection method for construction site monitoring. Weather as well as strong and weak data augmentation are integrated to cope with the complex construction site conditions (weather changes, camera view shifts, and so on) by integrating semisupervised learning to leverage the valid information in unlabeled construction site images. To validate its effectiveness, the proposed method was tested on the Alberta Construction Image Data Set (ACID), a public data set for the construction research community. The experimental results revealed that the proposed method achieves an average accuracy [mean average precision (mAP)] of 81.1% when trained on only 3% of the labeled images. This study helps to significantly reduce the development cost of vision-based object detection models for construction sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
共享精神应助Sevendesu采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
BJY完成签到 ,获得积分10
2秒前
2秒前
缓慢的微笑完成签到 ,获得积分10
4秒前
5秒前
wjw发布了新的文献求助20
7秒前
欣喜寒珊完成签到,获得积分10
7秒前
9秒前
幸运的科研小狗完成签到,获得积分10
9秒前
冷咖啡离开了杯垫完成签到,获得积分10
11秒前
11秒前
11秒前
脑洞疼应助kudoukoumei采纳,获得10
12秒前
lll发布了新的文献求助10
12秒前
cgao完成签到 ,获得积分10
14秒前
啾啾咪咪发布了新的文献求助10
15秒前
11应助1234567xjy采纳,获得20
16秒前
17秒前
852应助明亮无颜采纳,获得30
18秒前
19秒前
hi完成签到,获得积分10
19秒前
Wenpandaen应助科研民工采纳,获得10
21秒前
22秒前
11发布了新的文献求助10
22秒前
DK发布了新的文献求助30
23秒前
悦耳完成签到,获得积分10
25秒前
Yifan2024完成签到,获得积分10
25秒前
科研通AI2S应助byecslx采纳,获得10
26秒前
kudoukoumei发布了新的文献求助10
26秒前
科研通AI2S应助nini采纳,获得30
27秒前
27秒前
彭于晏应助啾啾咪咪采纳,获得10
27秒前
秋千有几根绳子完成签到 ,获得积分10
28秒前
28秒前
共享精神应助甜美小蕾采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138933
求助须知:如何正确求助?哪些是违规求助? 2789871
关于积分的说明 7793019
捐赠科研通 2446289
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096