Multi‐objective Bayesian modeling and optimization of 3D printing process via experimental data‐driven method

计算机科学 过程(计算) 贝叶斯概率 贝叶斯优化 数据挖掘 人工智能 操作系统
作者
Chengri Ding,Jianjun Wang,Jianjun Wang,Yiliu Tu,Y. Y. Ma
出处
期刊:Quality and Reliability Engineering International [Wiley]
标识
DOI:10.1002/qre.3513
摘要

Abstract The instability of product quality and low printing efficiency are the main obstacles to the widespread application of 3D printing in the manufacturing industry. Optimizing printing parameters can substantially improve product quality and printing efficiency. However, existing methods for optimizing process parameters primarily rely on computationally expensive numerical simulations or costly physical experiments, which cannot balance model accuracy and experiment cost. To the best of our knowledge, almost no relevant papers have been found to address the issues of product quality and printing efficiency in 3D printing from experimental data‐driven perspective. In this paper, we propose a method that integrates multiobjective Bayesian optimization (MOBO) with experimental data‐driven, aiming at obtaining more accurate optimization results at a lower cost. Distinguishing from previous studies, the proposed method utilizes experimental data instead of predicted values to update the model and find the optimal process parameters based on expected hypervolume improvement. The results of the 3D printing case study show that the proposed method can better model and optimize the highly fluctuating 3D printing process and obtain the optimal process parameters at a much lower cost. In addition, confirmatory experiments verify that the proposed method achieves higher printing efficiency while maintaining product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王一一发布了新的文献求助10
1秒前
3秒前
nebula应助djbj2022采纳,获得10
4秒前
脑洞疼应助WaEi采纳,获得10
5秒前
123完成签到,获得积分10
7秒前
oldblack完成签到,获得积分10
9秒前
酷波er应助高高初柔采纳,获得10
12秒前
清爽乐菱应助魔幻安筠采纳,获得30
13秒前
14秒前
14秒前
14秒前
djbj2022发布了新的文献求助10
15秒前
迷人的天抒完成签到 ,获得积分10
16秒前
17秒前
缥缈浩然发布了新的文献求助30
17秒前
18秒前
所所应助52hERTZ采纳,获得10
18秒前
王某发布了新的文献求助10
20秒前
NexusExplorer应助封25采纳,获得10
20秒前
健忘症发布了新的文献求助10
21秒前
迷人的天抒关注了科研通微信公众号
21秒前
大模型应助123采纳,获得10
21秒前
翔哥完成签到,获得积分10
23秒前
红红发布了新的文献求助10
23秒前
xzy998应助跳跃的代芙采纳,获得30
23秒前
27秒前
青青完成签到,获得积分10
27秒前
nebula应助大太阳采纳,获得10
28秒前
28秒前
30秒前
31秒前
yyx关闭了yyx文献求助
31秒前
高高初柔完成签到,获得积分20
31秒前
vera完成签到,获得积分10
31秒前
青藤之凉完成签到,获得积分10
33秒前
高高初柔发布了新的文献求助10
34秒前
青藤之凉发布了新的文献求助10
36秒前
慕青应助xxw采纳,获得20
36秒前
冷傲菠萝发布了新的文献求助10
37秒前
封25完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578