Multi‐objective Bayesian modeling and optimization of 3D printing process via experimental data‐driven method

计算机科学 过程(计算) 贝叶斯概率 贝叶斯优化 数据挖掘 人工智能 操作系统
作者
Chengri Ding,Jianjun Wang,Jianjun Wang,Yiliu Tu,Y. Y. Ma
出处
期刊:Quality and Reliability Engineering International [Wiley]
标识
DOI:10.1002/qre.3513
摘要

Abstract The instability of product quality and low printing efficiency are the main obstacles to the widespread application of 3D printing in the manufacturing industry. Optimizing printing parameters can substantially improve product quality and printing efficiency. However, existing methods for optimizing process parameters primarily rely on computationally expensive numerical simulations or costly physical experiments, which cannot balance model accuracy and experiment cost. To the best of our knowledge, almost no relevant papers have been found to address the issues of product quality and printing efficiency in 3D printing from experimental data‐driven perspective. In this paper, we propose a method that integrates multiobjective Bayesian optimization (MOBO) with experimental data‐driven, aiming at obtaining more accurate optimization results at a lower cost. Distinguishing from previous studies, the proposed method utilizes experimental data instead of predicted values to update the model and find the optimal process parameters based on expected hypervolume improvement. The results of the 3D printing case study show that the proposed method can better model and optimize the highly fluctuating 3D printing process and obtain the optimal process parameters at a much lower cost. In addition, confirmatory experiments verify that the proposed method achieves higher printing efficiency while maintaining product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刻苦问柳发布了新的文献求助10
1秒前
酷酷平卉完成签到 ,获得积分10
1秒前
星辰大海应助吴吴采纳,获得30
1秒前
JTB发布了新的文献求助10
1秒前
BILNQPL发布了新的文献求助10
1秒前
兮遥遥完成签到 ,获得积分10
2秒前
2秒前
2秒前
丰知然应助轩辕德地采纳,获得10
3秒前
4秒前
吨吨喝水关注了科研通微信公众号
4秒前
酷波er应助某只橘猫君采纳,获得10
4秒前
4秒前
stt发布了新的文献求助10
4秒前
4秒前
Ling完成签到,获得积分10
4秒前
TanFT完成签到,获得积分10
5秒前
笙歌自若发布了新的文献求助10
5秒前
5秒前
CipherSage应助积极的凌波采纳,获得10
6秒前
6秒前
烟花应助欣慰硬币采纳,获得10
6秒前
老大爷滴滴完成签到,获得积分10
6秒前
6秒前
6秒前
SciGPT应助LEMON采纳,获得10
7秒前
搜集达人应助叶飞荷采纳,获得10
7秒前
wxy完成签到,获得积分10
7秒前
8秒前
弄香完成签到,获得积分10
8秒前
gguc完成签到,获得积分10
8秒前
8秒前
无聊又夏完成签到,获得积分10
9秒前
今后应助木野狐采纳,获得10
9秒前
10秒前
小木木壮发布了新的文献求助10
10秒前
10秒前
10秒前
欢喜从霜发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762