A Nasal Swab Classifier to Evaluate the Probability of Lung Cancer in Patients With Pulmonary Nodules

医学 肺癌 分类器(UML) 内科学 转录组 放射科 病理 人工智能 生物 基因 计算机科学 生物化学 基因表达
作者
Carla Lamb,Kimberly Rieger‐Christ,Chakravarthy Reddy,Jing Huang,Jie Ding,Marla Johnson,P. Sean Walsh,William A. Bulman,Lori Lofaro,Momen M. Wahidi,David Feller‐Kopman,Avrum Spira,Giulia C. Kennedy,Peter J. Mazzone
出处
期刊:Chest [Elsevier BV]
卷期号:165 (4): 1009-1019 被引量:2
标识
DOI:10.1016/j.chest.2023.11.036
摘要

Background Accurate assessment of the probability of lung cancer (pCA) is critical in patients with pulmonary nodules (PN) to help guide decision-making. We sought to validate a clinical-genomic classifier developed using whole-transcriptome sequencing of nasal epithelial cells from patients with a PN ≤ 30 mm who smoke or have previously smoked. Research Question Can the probability of lung cancer in individuals with a PN and a history of smoking be predicted by a classifier that utilizes clinical factors and genomic data from nasal epithelial cells obtained by cytologic brushing? Study Design and Methods Machine learning was used to train a classifier using genomic and clinical features on 1,120 patients with PN labeled as benign or malignant established by a final diagnosis or a minimum of 12 months of radiographic surveillance. The classifier was designed to yield low, intermediate, and high-risk categories. The classifier was validated in an independent set of 312 patients, including 63 patients with a prior history of cancer (other than lung cancer), comparing the classifier prediction with the known clinical outcome. Results In the primary validation set, sensitivity and specificity for low-risk classification are 96% and 42% while sensitivity and specificity for high-risk classification is 58% and 90%. Sensitivity is similar across stages of non-small cell lung cancer, independent of subtype. Performance compared favorably to clinical-only risk models. Analysis of 63 patients with prior cancer shows similar performance as did subanalyses of patients with light vs. heavy smoking burden and those eligible for lung cancer screening vs. those who were not. Interpretation The nasal classifier provides an accurate assessment of pCA in individuals with a PN ≤ 30mm who smoke or have previously smoked. Classifier-guided decision-making could lead to fewer diagnostic procedures in patients without cancer and more timely treatment in patients with lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我心飞发布了新的文献求助10
刚刚
刚刚
科研通AI5应助Venus采纳,获得10
刚刚
Sudon完成签到 ,获得积分10
2秒前
2秒前
去追完成签到 ,获得积分10
4秒前
joybee完成签到,获得积分0
5秒前
搞怪泥猴桃完成签到,获得积分10
5秒前
稳重依云完成签到 ,获得积分10
7秒前
Wsyyy完成签到 ,获得积分10
7秒前
LC完成签到 ,获得积分10
8秒前
MXene应助神猪无敌采纳,获得20
8秒前
TIAOTIAO完成签到,获得积分10
9秒前
zhoujy完成签到,获得积分10
9秒前
再学三分钟完成签到 ,获得积分20
9秒前
未央完成签到,获得积分10
10秒前
ZHY完成签到,获得积分10
13秒前
sanwan发布了新的文献求助10
13秒前
JamesPei应助tyzsail采纳,获得10
13秒前
恋恋青葡萄完成签到,获得积分10
13秒前
陶醉怜容完成签到,获得积分10
13秒前
领导范儿应助搞怪泥猴桃采纳,获得10
13秒前
14秒前
晚风完成签到 ,获得积分10
14秒前
14秒前
科研通AI5应助半栀采纳,获得10
14秒前
pluto应助偷乐采纳,获得10
15秒前
再学三分钟关注了科研通微信公众号
15秒前
争气完成签到 ,获得积分10
17秒前
愈疏发布了新的文献求助10
18秒前
ceeray23应助十里长亭采纳,获得10
19秒前
afeifei完成签到,获得积分10
19秒前
19秒前
21秒前
moonlin完成签到 ,获得积分10
22秒前
everyone_woo完成签到,获得积分10
23秒前
23秒前
lhx完成签到,获得积分10
24秒前
ywjkeyantong完成签到,获得积分10
24秒前
鸭梨很大完成签到 ,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703