Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition

聚类分析 光伏系统 相关系数 计算机科学 梯度升压 预测建模 算法 统计 数学 随机森林 人工智能 机器学习 工程类 电气工程
作者
Thomas Wu,Ruifeng Hu,Hongyu Zhu,Meihui Jiang,Kun Lv,Yunxuan Dong,Dongdong Zhang
出处
期刊:Energy [Elsevier]
卷期号:288: 129770-129770 被引量:1
标识
DOI:10.1016/j.energy.2023.129770
摘要

Accurate photovoltaic power prediction is important to ensure stable and safe operation of microgrids. However, due to the high volatility of photovoltaic power data, the prediction accuracy of traditional prediction models is often unsatisfactory. To ensure stable operation of microgrids, this study proposes a combined improved extreme gradient boosting-kernel extreme learning machine short-term photovoltaic power prediction model consisting of multidimensional similar day clustering and dual decomposition. Initially, gray relation analysis, Pearson correlation coefficient, and Kmeans++ are used for clustering to obtain high-precision similar days. Subsequently, a dual signal decomposition model based on variational modal decomposition and complete ensemble empirical mode decomposition with adaptive noise is proposed. Finally, predictions are made using a combination of predictive models with complementary strengths and weaknesses, and the prediction results of each component are fitted with under three weather conditions, the average root mean square error is reduced by 78.02%,62.99%, and 62.48%, and the average mean absolute error is reduced by 82.55%, 71.13%, and 67.07% in comparison with the baseline model. The results show that the model is effective in improving the prediction accuracy in a variety of different environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gnufgg完成签到,获得积分10
刚刚
刚刚
ethan完成签到,获得积分20
刚刚
英姑应助木槿采纳,获得10
1秒前
hh完成签到,获得积分10
1秒前
邓111111完成签到 ,获得积分10
1秒前
秋秋儿发布了新的文献求助10
2秒前
2秒前
2秒前
EWW完成签到,获得积分10
3秒前
善良的雨筠完成签到,获得积分10
3秒前
音吹完成签到,获得积分10
3秒前
CipherSage应助陈住气采纳,获得10
3秒前
4秒前
kelakola完成签到,获得积分10
4秒前
4秒前
斯文败类应助咖褐采纳,获得10
4秒前
hh发布了新的文献求助10
5秒前
科研通AI6应助Albert采纳,获得10
5秒前
wanci应助勤恳青亦采纳,获得10
5秒前
LL发布了新的文献求助10
5秒前
6秒前
笑忘书发布了新的文献求助10
6秒前
王多鱼发布了新的文献求助10
6秒前
HYH完成签到,获得积分10
7秒前
7秒前
7秒前
18863933521发布了新的文献求助10
7秒前
吴彬完成签到,获得积分10
8秒前
霸气的凝竹完成签到,获得积分10
8秒前
9秒前
Sharif318发布了新的文献求助50
9秒前
18781913856完成签到 ,获得积分10
9秒前
热情依白发布了新的文献求助10
9秒前
科研通AI6应助饶天源采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
田様应助齐平露采纳,获得10
9秒前
桐桐应助hahahapan采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939