Predicting anticancer synergistic drug combinations based on multi-task learning

人工智能 机器学习 计算机科学 任务(项目管理) 自编码 深度学习 人工神经网络 多任务学习 领域(数学) 数学 管理 纯数学 经济
作者
Danyi Chen,Xiaowen Wang,Hongming Zhu,Yizhi Jiang,Yulong Li,Qi Liu,Qin Liu
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12859-023-05524-5
摘要

Abstract Background The discovery of anticancer drug combinations is a crucial work of anticancer treatment. In recent years, pre-screening drug combinations with synergistic effects in a large-scale search space adopting computational methods, especially deep learning methods, is increasingly popular with researchers. Although achievements have been made to predict anticancer synergistic drug combinations based on deep learning, the application of multi-task learning in this field is relatively rare. The successful practice of multi-task learning in various fields shows that it can effectively learn multiple tasks jointly and improve the performance of all the tasks. Methods In this paper, we propose MTLSynergy which is based on multi-task learning and deep neural networks to predict synergistic anticancer drug combinations. It simultaneously learns two crucial prediction tasks in anticancer treatment, which are synergy prediction of drug combinations and sensitivity prediction of monotherapy. And MTLSynergy integrates the classification and regression of prediction tasks into the same model. Moreover, autoencoders are employed to reduce the dimensions of input features. Results Compared with the previous methods listed in this paper, MTLSynergy achieves the lowest mean square error of 216.47 and the highest Pearson correlation coefficient of 0.76 on the drug synergy prediction task. On the corresponding classification task, the area under the receiver operator characteristics curve and the area under the precision–recall curve are 0.90 and 0.62, respectively, which are equivalent to the comparison methods. Through the ablation study, we verify that multi-task learning and autoencoder both have a positive effect on prediction performance. In addition, the prediction results of MTLSynergy in many cases are also consistent with previous studies. Conclusion Our study suggests that multi-task learning is significantly beneficial for both drug synergy prediction and monotherapy sensitivity prediction when combining these two tasks into one model. The ability of MTLSynergy to discover new anticancer synergistic drug combinations noteworthily outperforms other state-of-the-art methods. MTLSynergy promises to be a powerful tool to pre-screen anticancer synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A.y.w完成签到,获得积分10
2秒前
revew666完成签到,获得积分10
4秒前
科研通AI2S应助超级灰狼采纳,获得10
5秒前
7秒前
wanci应助阔达书雪采纳,获得10
7秒前
8秒前
瀚霖完成签到,获得积分20
8秒前
9秒前
城北徐公完成签到,获得积分10
9秒前
10秒前
13秒前
寒冷河马发布了新的文献求助10
14秒前
14秒前
niu完成签到,获得积分10
14秒前
14秒前
灵巧的坤完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
缪映天完成签到,获得积分10
19秒前
iNk应助FEOROCHA采纳,获得10
20秒前
jasam3514完成签到,获得积分10
20秒前
NZH发布了新的文献求助10
20秒前
21秒前
iNk应助慢半拍采纳,获得10
22秒前
HUI发布了新的文献求助10
22秒前
熊熊完成签到,获得积分10
22秒前
若初拾光发布了新的文献求助10
23秒前
Louislee完成签到,获得积分20
23秒前
23秒前
苻醉山完成签到 ,获得积分10
25秒前
英俊的铭应助瀚霖采纳,获得30
25秒前
李梦琦发布了新的文献求助10
26秒前
Louislee发布了新的文献求助10
27秒前
慢半拍完成签到,获得积分10
28秒前
KaiZI完成签到,获得积分10
29秒前
32秒前
32秒前
无心的薄荷完成签到,获得积分10
34秒前
夏夏发布了新的文献求助10
34秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180826
求助须知:如何正确求助?哪些是违规求助? 2831048
关于积分的说明 7982721
捐赠科研通 2492898
什么是DOI,文献DOI怎么找? 1329918
科研通“疑难数据库(出版商)”最低求助积分说明 635836
版权声明 602954