田口方法
克里金
涡轮机
水平轴
差异进化
差速器(机械装置)
纵轴
算法
计算机科学
数学优化
数学
工程类
机械工程
结构工程
航空航天工程
几何学
机器学习
标识
DOI:10.1080/15567036.2024.2308655
摘要
The capability of vertical axis wind turbine (VAWT) is influenced by its input parameters. In this paper, for the three-bladed VAWT with the NACA0018 airfoil, three important input parameters, i.e. tip speed ratio (TSR), airfoil chord length (C), and pitch angle (β), are selected to explore their impact on the capability of the VAWT, and then to find the best combination of them. Firstly, 16 sets of experiments are determined according to the Taguchi method and are evaluated using the 2D computational fluid dynamics (CFD) numerical simulation, and further studied with the Analysis of Variance. The consequence shows that the TSR and pitch angle are more critical to the performance of the VAWT. In order to obtain the optimal configuration of these parameters, an intelligent method is further proposed. Firstly, a certain number of design schemes are extracted in the selected space through Latin hypercube sampling (LHS), and then the torque coefficient (Cm) of each design scheme was obtained by 2D CFD simulation, the Kriging model is used to establish the correlation among the input parameters and their corresponding torque coefficient. Finally, the improved differential evolution algorithm (JADE) is used to tackle the Kriging model to get the optimal input parameter values. The results show that when the rotor diameter (D) is 2.5 m, the optimal parameters are TSR is 2.6, C is 0.227 m and β is −2.47°, the performance of the VAWT is further improved by about 4.5% compared with the optimal values obtained by the Taguchi method.
科研通智能强力驱动
Strongly Powered by AbleSci AI