Identification of Rice Disease Under Complex Background Based on PSOC-DRCNet

计算机科学 人工智能 机器学习 粮食安全 过度拟合 模式识别(心理学) 农业 人工神经网络 生物 生态学
作者
Zewei Liu,Guoxiong Zhou,Wenke Zhu,Yi Chai,Liujun Li,Yanfeng Wang,Yahui Hu,Weisi Dai,Rui Liu,Lixiang Sun
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123643-123643 被引量:10
标识
DOI:10.1016/j.eswa.2024.123643
摘要

Rice is a crucial agricultural crop, yet it frequently suffers from various diseases, leading to decreased yields and, in severe cases, crop failure. Diseases significantly affect rice growth and yield, resulting in economic losses and food security challenges. The role of image recognition in identifying rice diseases is critical in agricultural production. It enables automated and efficient detection of rice diseases, which is essential for effective management, ensuring food security and sustainable agriculture. To address issues like background noise and edge blurring in rice disease image capture, as well as challenges in determining the optimal learning rate during the training of traditional rice disease recognition networks, a novel method based on PSOC-DRCNet is proposed for rice disease recognition.. First, tto solve the problem of background interference, Dual Mode Attention (DMA) is proposed to adaptively capture meaningful regions in rice disease images. Second, the Residual Adaptive Block(RAB) is proposed, which utilizes dimensional changes and channel attention to solve edge blur problems. Then, a Cross entropy and regularized mixed Loss function (CerLoss), is proposed to optimize the learning strategy of the model in the process of processing datasets and enhance the performance and generalization ability of the model to avoid overfitting problems. Ultimately, In response to the cumbersome problem of finding the optimal learning rate, we propose using Particle Swarm Optimization Chameleon (PSOC) to find the optimal learning rate and train the PSOC-DRCNet model on our custom dataset and compare it with other existing methods and the final average classification accuracy of PSOC-DRCNet is 93.88% with an F1 score of 0.940. We compare it with other existing methods. It is proved that the average classification accuracy of our model under hyper-parameter unification is 92.65% F1 score is 0.928. We validated the PSOC-DRCNet by conducting comparative analyses with other models and through generalization experiments and module effectiveness tests. Additionally, the practicality of PSOC-DRCNet was confirmed through its application in real-world scenarios. The methods proposed in this paper successfully enable the identification of various diseases in rice leaves, offering a practical solution for incorporating deep learning into the agricultural production process. Furthermore, these findings serve as a valuable reference for disease identification in other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条的枕头完成签到 ,获得积分10
1秒前
热情大树完成签到,获得积分10
5秒前
kk完成签到,获得积分10
6秒前
LYC完成签到,获得积分10
7秒前
调皮的巧凡完成签到,获得积分10
8秒前
南木完成签到,获得积分10
9秒前
perfect完成签到 ,获得积分10
9秒前
猪猪侠完成签到 ,获得积分10
14秒前
严羽完成签到,获得积分10
17秒前
葡萄柚子完成签到 ,获得积分10
17秒前
23秒前
爱吃的肥虾完成签到,获得积分10
23秒前
23秒前
hilm应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
24秒前
TaoTaooooII完成签到,获得积分10
24秒前
将将将应助科研通管家采纳,获得10
24秒前
24秒前
将将将应助科研通管家采纳,获得10
24秒前
24秒前
hey完成签到,获得积分10
24秒前
25秒前
五月天完成签到,获得积分10
25秒前
斯文的老虎完成签到,获得积分10
26秒前
28秒前
李不乐完成签到,获得积分10
34秒前
老野猫完成签到 ,获得积分10
39秒前
44秒前
seven完成签到,获得积分10
44秒前
雪梅完成签到 ,获得积分10
45秒前
李沐唅完成签到,获得积分10
45秒前
40873完成签到 ,获得积分10
46秒前
51秒前
54秒前
ww完成签到,获得积分10
55秒前
Jeamren完成签到,获得积分10
57秒前
诺796完成签到,获得积分10
1分钟前
马路完成签到,获得积分10
1分钟前
wll1091完成签到 ,获得积分10
1分钟前
陌上俨然完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465567
求助须知:如何正确求助?哪些是违规求助? 4569829
关于积分的说明 14321219
捐赠科研通 4496303
什么是DOI,文献DOI怎么找? 2463217
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427369