Identification of Rice Disease Under Complex Background Based on PSOC-DRCNet

计算机科学 人工智能 机器学习 粮食安全 过度拟合 模式识别(心理学) 农业 人工神经网络 生物 生态学
作者
Zewei Liu,Guoxiong Zhou,Wenke Zhu,Yi Chai,Liujun Li,Yanfeng Wang,Yahui Hu,Weisi Dai,Rui Liu,Lixiang Sun
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123643-123643 被引量:10
标识
DOI:10.1016/j.eswa.2024.123643
摘要

Rice is a crucial agricultural crop, yet it frequently suffers from various diseases, leading to decreased yields and, in severe cases, crop failure. Diseases significantly affect rice growth and yield, resulting in economic losses and food security challenges. The role of image recognition in identifying rice diseases is critical in agricultural production. It enables automated and efficient detection of rice diseases, which is essential for effective management, ensuring food security and sustainable agriculture. To address issues like background noise and edge blurring in rice disease image capture, as well as challenges in determining the optimal learning rate during the training of traditional rice disease recognition networks, a novel method based on PSOC-DRCNet is proposed for rice disease recognition.. First, tto solve the problem of background interference, Dual Mode Attention (DMA) is proposed to adaptively capture meaningful regions in rice disease images. Second, the Residual Adaptive Block(RAB) is proposed, which utilizes dimensional changes and channel attention to solve edge blur problems. Then, a Cross entropy and regularized mixed Loss function (CerLoss), is proposed to optimize the learning strategy of the model in the process of processing datasets and enhance the performance and generalization ability of the model to avoid overfitting problems. Ultimately, In response to the cumbersome problem of finding the optimal learning rate, we propose using Particle Swarm Optimization Chameleon (PSOC) to find the optimal learning rate and train the PSOC-DRCNet model on our custom dataset and compare it with other existing methods and the final average classification accuracy of PSOC-DRCNet is 93.88% with an F1 score of 0.940. We compare it with other existing methods. It is proved that the average classification accuracy of our model under hyper-parameter unification is 92.65% F1 score is 0.928. We validated the PSOC-DRCNet by conducting comparative analyses with other models and through generalization experiments and module effectiveness tests. Additionally, the practicality of PSOC-DRCNet was confirmed through its application in real-world scenarios. The methods proposed in this paper successfully enable the identification of various diseases in rice leaves, offering a practical solution for incorporating deep learning into the agricultural production process. Furthermore, these findings serve as a valuable reference for disease identification in other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智灯泡发布了新的文献求助10
2秒前
2秒前
852应助百羊采纳,获得10
2秒前
文静萤发布了新的文献求助10
3秒前
隐形的baby发布了新的文献求助10
3秒前
隐形曼青应助GGMJ采纳,获得10
3秒前
旺仔不甜完成签到,获得积分10
4秒前
丘比特应助June采纳,获得10
6秒前
liusha发布了新的文献求助10
7秒前
Hello应助mira采纳,获得10
9秒前
10秒前
科研通AI6应助小易采纳,获得10
11秒前
lxt完成签到,获得积分10
13秒前
15秒前
15秒前
怜然关注了科研通微信公众号
17秒前
情怀应助李杰采纳,获得10
19秒前
所所应助天天开心采纳,获得10
19秒前
初一发布了新的文献求助10
19秒前
赘婿应助万松辉采纳,获得10
19秒前
20秒前
ysws完成签到,获得积分10
21秒前
Orange应助乐观的颦采纳,获得10
21秒前
完美世界应助June采纳,获得10
23秒前
24秒前
24秒前
闪闪完成签到,获得积分10
26秒前
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
26秒前
所所应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得20
27秒前
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
无花果应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073