Identification of Rice Disease Under Complex Background Based on PSOC-DRCNet

计算机科学 人工智能 机器学习 粮食安全 过度拟合 模式识别(心理学) 农业 人工神经网络 生物 生态学
作者
Zewei Liu,Guoxiong Zhou,Wenke Zhu,Yi Chai,Liujun Li,Yanfeng Wang,Yahui Hu,Weisi Dai,Rui Liu,Lixiang Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123643-123643 被引量:10
标识
DOI:10.1016/j.eswa.2024.123643
摘要

Rice is a crucial agricultural crop, yet it frequently suffers from various diseases, leading to decreased yields and, in severe cases, crop failure. Diseases significantly affect rice growth and yield, resulting in economic losses and food security challenges. The role of image recognition in identifying rice diseases is critical in agricultural production. It enables automated and efficient detection of rice diseases, which is essential for effective management, ensuring food security and sustainable agriculture. To address issues like background noise and edge blurring in rice disease image capture, as well as challenges in determining the optimal learning rate during the training of traditional rice disease recognition networks, a novel method based on PSOC-DRCNet is proposed for rice disease recognition.. First, tto solve the problem of background interference, Dual Mode Attention (DMA) is proposed to adaptively capture meaningful regions in rice disease images. Second, the Residual Adaptive Block(RAB) is proposed, which utilizes dimensional changes and channel attention to solve edge blur problems. Then, a Cross entropy and regularized mixed Loss function (CerLoss), is proposed to optimize the learning strategy of the model in the process of processing datasets and enhance the performance and generalization ability of the model to avoid overfitting problems. Ultimately, In response to the cumbersome problem of finding the optimal learning rate, we propose using Particle Swarm Optimization Chameleon (PSOC) to find the optimal learning rate and train the PSOC-DRCNet model on our custom dataset and compare it with other existing methods and the final average classification accuracy of PSOC-DRCNet is 93.88% with an F1 score of 0.940. We compare it with other existing methods. It is proved that the average classification accuracy of our model under hyper-parameter unification is 92.65% F1 score is 0.928. We validated the PSOC-DRCNet by conducting comparative analyses with other models and through generalization experiments and module effectiveness tests. Additionally, the practicality of PSOC-DRCNet was confirmed through its application in real-world scenarios. The methods proposed in this paper successfully enable the identification of various diseases in rice leaves, offering a practical solution for incorporating deep learning into the agricultural production process. Furthermore, these findings serve as a valuable reference for disease identification in other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助qwerty采纳,获得50
刚刚
2秒前
3秒前
冷静傲丝完成签到 ,获得积分10
3秒前
zzz发布了新的文献求助10
4秒前
旺旺大礼包完成签到,获得积分10
4秒前
希望天下0贩的0应助hqyh5016采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Rocc完成签到,获得积分10
5秒前
5秒前
Cathy_Durham发布了新的文献求助10
5秒前
美美桑内发布了新的文献求助10
5秒前
5秒前
谷粱紫槐发布了新的文献求助10
6秒前
7秒前
yyd发布了新的文献求助10
8秒前
1111完成签到,获得积分10
9秒前
斯文败类应助zhounini1989采纳,获得10
9秒前
11秒前
田様应助noah采纳,获得10
11秒前
学到疯魔发布了新的文献求助80
12秒前
小马甲应助风味土豆片采纳,获得10
12秒前
13秒前
15秒前
15秒前
Hanayu完成签到 ,获得积分10
15秒前
16秒前
21完成签到 ,获得积分10
16秒前
17秒前
Ceng发布了新的文献求助10
18秒前
18秒前
1820完成签到,获得积分20
18秒前
sky发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
ofa完成签到,获得积分10
20秒前
aaa完成签到,获得积分10
21秒前
鲤鱼诗桃发布了新的文献求助10
22秒前
22秒前
xxxxx炒菜发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089190
求助须知:如何正确求助?哪些是违规求助? 4303941
关于积分的说明 13413121
捐赠科研通 4129609
什么是DOI,文献DOI怎么找? 2261628
邀请新用户注册赠送积分活动 1265690
关于科研通互助平台的介绍 1200313