Identification of Rice Disease Under Complex Background Based on PSOC-DRCNet

计算机科学 人工智能 机器学习 粮食安全 过度拟合 模式识别(心理学) 农业 人工神经网络 生物 生态学
作者
Zewei Liu,Guoxiong Zhou,Wenke Zhu,Yi Chai,Liujun Li,Yanfeng Wang,Yahui Hu,Weisi Dai,Rui Liu,Lixiang Sun
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123643-123643 被引量:4
标识
DOI:10.1016/j.eswa.2024.123643
摘要

Rice is a crucial agricultural crop, yet it frequently suffers from various diseases, leading to decreased yields and, in severe cases, crop failure. Diseases significantly affect rice growth and yield, resulting in economic losses and food security challenges. The role of image recognition in identifying rice diseases is critical in agricultural production. It enables automated and efficient detection of rice diseases, which is essential for effective management, ensuring food security and sustainable agriculture. To address issues like background noise and edge blurring in rice disease image capture, as well as challenges in determining the optimal learning rate during the training of traditional rice disease recognition networks, a novel method based on PSOC-DRCNet is proposed for rice disease recognition.. First, tto solve the problem of background interference, Dual Mode Attention (DMA) is proposed to adaptively capture meaningful regions in rice disease images. Second, the Residual Adaptive Block(RAB) is proposed, which utilizes dimensional changes and channel attention to solve edge blur problems. Then, a Cross entropy and regularized mixed Loss function (CerLoss), is proposed to optimize the learning strategy of the model in the process of processing datasets and enhance the performance and generalization ability of the model to avoid overfitting problems. Ultimately, In response to the cumbersome problem of finding the optimal learning rate, we propose using Particle Swarm Optimization Chameleon (PSOC) to find the optimal learning rate and train the PSOC-DRCNet model on our custom dataset and compare it with other existing methods and the final average classification accuracy of PSOC-DRCNet is 93.88% with an F1 score of 0.940. We compare it with other existing methods. It is proved that the average classification accuracy of our model under hyper-parameter unification is 92.65% F1 score is 0.928. We validated the PSOC-DRCNet by conducting comparative analyses with other models and through generalization experiments and module effectiveness tests. Additionally, the practicality of PSOC-DRCNet was confirmed through its application in real-world scenarios. The methods proposed in this paper successfully enable the identification of various diseases in rice leaves, offering a practical solution for incorporating deep learning into the agricultural production process. Furthermore, these findings serve as a valuable reference for disease identification in other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助称心的语梦采纳,获得10
1秒前
雨小科完成签到 ,获得积分10
1秒前
nangua完成签到,获得积分10
1秒前
2秒前
5秒前
6秒前
8秒前
JamesPei应助郭文博采纳,获得10
8秒前
9秒前
辞镜若鱼发布了新的文献求助10
10秒前
12秒前
14秒前
郭文博发布了新的文献求助10
19秒前
子车茗应助Simon_chat采纳,获得30
20秒前
皮卡发布了新的文献求助10
23秒前
bkagyin应助yiyiluo采纳,获得10
24秒前
我是老大应助蘑菇采纳,获得10
27秒前
SYC完成签到,获得积分10
28秒前
情怀应助崔崔采纳,获得10
29秒前
30秒前
FashionBoy应助来一桶微笑采纳,获得10
31秒前
皮卡完成签到,获得积分10
35秒前
研友_LwbGg8发布了新的文献求助10
35秒前
香蕉觅云应助奕奕采纳,获得10
35秒前
郭文博完成签到,获得积分10
35秒前
粗犷的幻嫣完成签到,获得积分10
38秒前
38秒前
俭朴的语琴完成签到,获得积分10
41秒前
宜醉宜游宜睡应助若谷采纳,获得10
41秒前
42秒前
43秒前
ximei完成签到,获得积分10
43秒前
研友_LwbGg8完成签到,获得积分10
43秒前
43秒前
44秒前
高贵紫丝发布了新的文献求助10
46秒前
不懈奋进应助大喜采纳,获得30
46秒前
蘑菇发布了新的文献求助10
47秒前
jjjx完成签到 ,获得积分10
47秒前
爱静静应助俭朴的语琴采纳,获得10
47秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338542
求助须知:如何正确求助?哪些是违规求助? 2966732
关于积分的说明 8626376
捐赠科研通 2645929
什么是DOI,文献DOI怎么找? 1448923
科研通“疑难数据库(出版商)”最低求助积分说明 671298
邀请新用户注册赠送积分活动 660003