亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Collaborative Self-Supervised Domain Adaptation for Low-Quality Medical Image Enhancement

计算机科学 图像质量 适应(眼睛) 分割 医学影像学 水准点(测量) 质量(理念) 人工智能 图像分割 计算机视觉 图像(数学) 模式识别(心理学) 机器学习 光学 物理 哲学 大地测量学 认识论 地理
作者
Qingshan Hou,Yaqi Wang,Peng Cao,Shuai Cheng,Linqi Lan,Jinzhu Yang,Xiaoli Liu,Osmar R. Zai͏̈ane
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2479-2494
标识
DOI:10.1109/tmi.2024.3367367
摘要

Medical image analysis techniques have been employed in diagnosing and screening clinical diseases. However, both poor medical image quality and illumination style inconsistency increase uncertainty in clinical decision-making, potentially resulting in clinician misdiagnosis. The majority of current image enhancement methods primarily concentrate on enhancing medical image quality by leveraging high-quality reference images, which are challenging to collect in clinical applications. In this study, we address image quality enhancement within a fully self-supervised learning setting, wherein neither high-quality images nor paired images are required. To achieve this goal, we investigate the potential of self-supervised learning combined with domain adaptation to enhance the quality of medical images without the guidance of high-quality medical images. We design a Domain Adaptation Self-supervised Quality Enhancement framework, called DASQE. More specifically, we establish multiple domains at the patch level through a designed rule-based quality assessment scheme and style clustering. To achieve image quality enhancement and maintain style consistency, we formulate the image quality enhancement as a collaborative self-supervised domain adaptation task for disentangling the low-quality factors, medical image content, and illumination style characteristics by exploring intrinsic supervision in the low-quality medical images. Finally, we perform extensive experiments on six benchmark datasets of medical images, and the experimental results demonstrate that DASQE attains state-of-the-art performance. Furthermore, we explore the impact of the proposed method on various clinical tasks, such as retinal fundus vessel/lesion segmentation, nerve fiber segmentation, polyp segmentation, skin lesion segmentation, and disease classification. The results demonstrate that DASQE is advantageous for diverse downstream image analysis tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
XiongLuck给XiongLuck的求助进行了留言
8秒前
8秒前
8秒前
方远锋完成签到,获得积分10
9秒前
星辰大海应助林lin采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
爱静静应助科研通管家采纳,获得30
16秒前
16秒前
爱静静应助科研通管家采纳,获得10
16秒前
WerWu完成签到,获得积分10
19秒前
chen完成签到,获得积分10
26秒前
28秒前
bkagyin应助CSS采纳,获得10
32秒前
XiongLuck发布了新的文献求助10
33秒前
53秒前
56秒前
liu完成签到,获得积分10
1分钟前
liu发布了新的文献求助10
1分钟前
徐叽钰应助liu采纳,获得20
1分钟前
1分钟前
魔幻问薇完成签到 ,获得积分10
1分钟前
顾矜应助huanglu采纳,获得10
1分钟前
不开心就吃糖完成签到 ,获得积分10
1分钟前
小蘑菇应助XiongLuck采纳,获得10
1分钟前
梅赛德斯奔驰完成签到,获得积分10
1分钟前
任ren完成签到 ,获得积分10
1分钟前
Akim应助cyk采纳,获得10
1分钟前
潼潼完成签到 ,获得积分10
1分钟前
kaustal完成签到,获得积分10
1分钟前
1分钟前
1分钟前
清新的芷发布了新的文献求助10
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
zxr完成签到 ,获得积分10
1分钟前
NexusExplorer应助jxx采纳,获得10
1分钟前
活力竺发布了新的文献求助10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793540
关于积分的说明 7806835
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303444
科研通“疑难数据库(出版商)”最低求助积分说明 626917
版权声明 601314