Growth of Double-Network Tough Hydrogel Coatings by Surface-Initiated Polymerization

材料科学 聚合 纳米技术 复合材料 化学工程 聚合物 工程类
作者
Yuhong Li,Junjie Liu,Qifang Zhang,Nan Hu,Zhouhu Jiang,Qianhua Kan,Guozheng Kang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (8): 10822-10831 被引量:8
标识
DOI:10.1021/acsami.4c00370
摘要

Hydrogel coatings exhibit versatile applications in biomedicine, flexible electronics, and environmental science. However, current coating methods encounter challenges in simultaneously achieving strong interfacial bonding, robust hydrogel coatings, and the ability to coat substrates with controlled thickness. This paper introduces a novel approach to grow a double-network (DN) tough hydrogel coating on various substrates. The process involves initial substrate modification using a silane coupling agent, followed by the deposition of an initiator layer on its surface. Subsequently, the substrate is immersed in a DN hydrogel precursor, where the coating grows under ultraviolet (UV) illumination. Precise control over the coating thickness is achieved by adjusting the UV illumination duration and the initiator quantity. The experimental measurement of adhesion reveals strong bonding between the DN hydrogel coating and diverse substrates, reaching up to 1012.9 J/m2 between the DN hydrogel coating and a glass substrate. The lubricity performance of the DN hydrogel coating is experimentally characterized, which is dependent on the coating thickness, applied pressure, and sliding velocity. The incorporation of 3D printing technology into the current coating method enables the creation of intricate hydrogel coating patterns on a flat substrate. Moreover, the hydrogel coating's versatility is demonstrated through its effective applications in oil-water separation and antifogging glasses, underscoring its wide-ranging potential. The robust DN hydrogel coating method presented here holds promise for advancing hydrogel applications across diverse fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lit完成签到 ,获得积分10
刚刚
橘络完成签到 ,获得积分10
刚刚
碧蓝的海豚完成签到,获得积分10
1秒前
寂寞的茹妖完成签到,获得积分10
1秒前
OrangeBlueHeart完成签到,获得积分10
1秒前
丰富的惮完成签到,获得积分20
1秒前
小肖的KYT完成签到,获得积分10
1秒前
2秒前
NexusExplorer应助妞妞叫小南采纳,获得10
2秒前
YY发布了新的文献求助10
3秒前
3秒前
科研通AI5应助ark861023采纳,获得10
3秒前
3秒前
Frankyu完成签到,获得积分10
4秒前
科研通AI5应助江烁采纳,获得10
4秒前
彭于晏应助科研人采纳,获得10
4秒前
彭于晏应助Reese采纳,获得10
4秒前
Orange应助summer采纳,获得10
4秒前
ding应助想退休采纳,获得10
4秒前
柚C美式完成签到 ,获得积分10
5秒前
沐沐完成签到,获得积分10
5秒前
uu完成签到,获得积分10
5秒前
宋芽芽u完成签到 ,获得积分10
5秒前
5秒前
5秒前
anxin完成签到 ,获得积分10
6秒前
lgq12697完成签到,获得积分0
6秒前
ohh完成签到,获得积分10
6秒前
6秒前
田様应助Y_采纳,获得10
7秒前
shaozi完成签到,获得积分10
8秒前
科研通AI6应助无私的发卡采纳,获得10
8秒前
8秒前
完美世界应助changshouzhi采纳,获得30
9秒前
9秒前
9秒前
9秒前
情怀应助朴树朋友采纳,获得10
9秒前
Eternitymaria完成签到,获得积分10
9秒前
mumufan完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4953434
求助须知:如何正确求助?哪些是违规求助? 4215947
关于积分的说明 13116590
捐赠科研通 3998125
什么是DOI,文献DOI怎么找? 2188176
邀请新用户注册赠送积分活动 1203325
关于科研通互助平台的介绍 1116003