Growth of Double-Network Tough Hydrogel Coatings by Surface-Initiated Polymerization

材料科学 聚合 纳米技术 复合材料 化学工程 聚合物 工程类
作者
Yuhong Li,Junjie Liu,Qifang Zhang,Nan Hu,Zhouhu Jiang,Qianhua Kan,Guozheng Kang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (8): 10822-10831 被引量:3
标识
DOI:10.1021/acsami.4c00370
摘要

Hydrogel coatings exhibit versatile applications in biomedicine, flexible electronics, and environmental science. However, current coating methods encounter challenges in simultaneously achieving strong interfacial bonding, robust hydrogel coatings, and the ability to coat substrates with controlled thickness. This paper introduces a novel approach to grow a double-network (DN) tough hydrogel coating on various substrates. The process involves initial substrate modification using a silane coupling agent, followed by the deposition of an initiator layer on its surface. Subsequently, the substrate is immersed in a DN hydrogel precursor, where the coating grows under ultraviolet (UV) illumination. Precise control over the coating thickness is achieved by adjusting the UV illumination duration and the initiator quantity. The experimental measurement of adhesion reveals strong bonding between the DN hydrogel coating and diverse substrates, reaching up to 1012.9 J/m2 between the DN hydrogel coating and a glass substrate. The lubricity performance of the DN hydrogel coating is experimentally characterized, which is dependent on the coating thickness, applied pressure, and sliding velocity. The incorporation of 3D printing technology into the current coating method enables the creation of intricate hydrogel coating patterns on a flat substrate. Moreover, the hydrogel coating's versatility is demonstrated through its effective applications in oil–water separation and antifogging glasses, underscoring its wide-ranging potential. The robust DN hydrogel coating method presented here holds promise for advancing hydrogel applications across diverse fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助lf-leo采纳,获得10
刚刚
xTATx发布了新的文献求助10
1秒前
乐乐应助动听的蛟凤采纳,获得10
1秒前
1秒前
zhang完成签到,获得积分10
2秒前
醉蟹肠粉完成签到,获得积分10
2秒前
虎帅发布了新的文献求助10
3秒前
田様应助小冲采纳,获得10
3秒前
曙光完成签到,获得积分10
4秒前
谷粱诗云完成签到,获得积分20
4秒前
我喜欢的毛驴完成签到,获得积分10
4秒前
Trophyyy完成签到 ,获得积分10
6秒前
所所应助小小组采纳,获得10
6秒前
石头完成签到,获得积分10
6秒前
7秒前
虎帅完成签到,获得积分20
7秒前
卡卡应助dida采纳,获得20
7秒前
dxdy完成签到,获得积分10
7秒前
fagfagsf完成签到,获得积分10
8秒前
慕青应助蛋白激酶采纳,获得10
8秒前
艺阳完成签到,获得积分10
8秒前
易槐发布了新的文献求助20
8秒前
Andy完成签到,获得积分20
9秒前
D33sama完成签到,获得积分10
9秒前
vagabond发布了新的文献求助10
10秒前
执着乐双完成签到,获得积分10
11秒前
11秒前
Ava应助欣喜的曼柔采纳,获得10
12秒前
zeppeli发布了新的文献求助10
12秒前
12秒前
英姑应助sherry221采纳,获得10
12秒前
小榕完成签到,获得积分10
13秒前
14秒前
ssss发布了新的文献求助10
14秒前
真实的俊驰完成签到,获得积分10
14秒前
14秒前
14秒前
ccc完成签到 ,获得积分10
14秒前
木子完成签到,获得积分10
15秒前
平淡水儿发布了新的文献求助10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134291
求助须知:如何正确求助?哪些是违规求助? 2785137
关于积分的说明 7770495
捐赠科研通 2440760
什么是DOI,文献DOI怎么找? 1297506
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792