Broadband absorption in nanostructured cross-shaped metamaterial for visible and infrared wavelengths

材料科学 超材料 波长 等离子体子 吸收(声学) 光学 极化(电化学) 光电子学 电介质 光子学 物理 化学 复合材料 物理化学
作者
Ammar Armghan,Muhammad Bashir,Khaled Aliqab,Meshari Alsharari
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:200: 108970-108970 被引量:5
标识
DOI:10.1016/j.ijthermalsci.2024.108970
摘要

The successful implementation of broadband, ultrathin and highly efficient nanostructured plasmonic absorbers is difficult to realize. The performance of the nanoscale metamaterial absorbers is severely restricted due to the multilayer design architecture and difficult fabrication process. So herein a simple and plain nano cross-shaped ring of nickel metal is exploited as a broadband absorber for visible to mid-infrared spectrum. The proposed cross shaped nanoabsorber (CSNA) holds a three layers device configuration with upper and lower layers of plasmonic metal Ni, an insulating dielectric material of aluminium nitride (AlN), which is sandwiched between them. The CSNA reveals an ultrabroadband absorption spectrum operating in the visible and IR wavelengths from 400 to 3000 nm, which exhibits an average absorption value of more than 90%. Moreover, the angular performance analysis is also conducted by considering the incident and polarization angles of the incident optical light. It is noticed that the discussed CSNA manifests polarization insensitive behavior under the rotation of polarization angles and it also shows stable absorption response by exciting different oblique incident angles. The optimal engineering of the design parameters of the proposed CSNA including length of the cross-shaped resonator, spacer thickness and periodicity of the unit cell play a pivotal role in enhancing the absorption window. Additionally, an analytical equivalent circuit modeling approach has been adopted for calculating absorption features and validating it through simulation results. In conclusion, the designed CSNA holds great promise for various applications, such as energy harvesting, optical emission, and thermal photonics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半糖神仙完成签到 ,获得积分10
1秒前
小菜鸟完成签到 ,获得积分10
1秒前
2秒前
江浪浪发布了新的文献求助10
3秒前
song完成签到,获得积分10
4秒前
科研通AI2S应助Luckyz采纳,获得10
5秒前
晏清完成签到 ,获得积分20
6秒前
李健应助科研通管家采纳,获得10
8秒前
cjs应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
寻道图强应助科研通管家采纳,获得30
8秒前
思源应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
芒果完成签到,获得积分10
10秒前
NexusExplorer应助花灯王子采纳,获得10
11秒前
Spark完成签到,获得积分10
13秒前
雨下着的坡道完成签到,获得积分10
15秒前
大力初珍完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
long完成签到 ,获得积分10
17秒前
无情耷完成签到 ,获得积分10
20秒前
yml完成签到 ,获得积分10
21秒前
开朗的驳发布了新的文献求助10
23秒前
安子发布了新的文献求助10
24秒前
24秒前
1111完成签到 ,获得积分10
25秒前
mascot0111完成签到,获得积分10
26秒前
VIVI完成签到,获得积分10
26秒前
严怜梦完成签到 ,获得积分10
26秒前
27秒前
无心的青槐应助点点zzz采纳,获得30
28秒前
yml完成签到 ,获得积分10
28秒前
28秒前
橘色天际线完成签到 ,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825