Research on recognition algorithm for special-shaped parts based on improved YOLOv5s

计算机科学 算法 图像处理 人工智能 计算机视觉 图像(数学)
作者
Jiarui Zhang,Guo Zhang,Junlin Yang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (01)
标识
DOI:10.1117/1.jei.33.1.013050
摘要

With the rapid development of machinery and equipment modernization, more and more non-standard shaped parts are designed and put into specific occasions to use to meet the needs of special circumstances. Therefore, how to quickly recognize the shaped parts has become an urgent need for a technology. To recognize shaped parts, deep learning methods such as the widely used YOLOv5s network are commonly employed. However, directly deploying the official network model has drawbacks, including heavy reliance on data, poor detection results for small target objects, and high hardware requirements. These issues increase the threshold for non-professionals to use it. For this reason, this paper designs an improved network based on YOLOv5s. This paper proposes improvements in terms of both lightness and accuracy. In terms of light weight, the backbone of YOLOv5s is replaced by MobileNetV3; and the convolution and C3 module of the head part of YOLOv5s is replaced by phantom convolution and C3Ghost module, and the attention mechanism layer is trimmed to reduce the number of computational parameters and model size. In terms of accuracy, non-maximum suppression (NMS) is improved to Soft-NMS; intersection over union (IoU) loss function is replaced with distance-IoU loss function. And trained on the homemade shaped parts dataset, the results show that the average accuracy of the improved network is 99.2% in the test case, the model size is 2.4M, and the detection time is 1.5 ms per image, which is a significant increase in speed and accuracy compared with other unmodified networks, and a substantial decrease in the model size and the number of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Re采纳,获得10
1秒前
RoyKu完成签到,获得积分10
1秒前
领导范儿应助机灵的冰夏采纳,获得10
1秒前
霜月十四发布了新的文献求助30
1秒前
2秒前
白白白发布了新的文献求助10
2秒前
尊敬惜雪发布了新的文献求助10
2秒前
clh0_0clh完成签到,获得积分10
3秒前
Zhang发布了新的文献求助10
3秒前
3秒前
李浅墨发布了新的文献求助10
3秒前
3秒前
roy_chiang发布了新的文献求助10
4秒前
4秒前
无奈世立完成签到,获得积分10
4秒前
4秒前
Orange应助奶糖不太甜采纳,获得10
5秒前
笑点低灯泡完成签到,获得积分10
5秒前
5秒前
情怀应助牙膏采纳,获得10
5秒前
乐乐应助微笑香薇采纳,获得10
5秒前
5秒前
AlexLam发布了新的文献求助10
6秒前
6秒前
美满西装发布了新的文献求助20
6秒前
6秒前
23完成签到,获得积分10
7秒前
8秒前
动感的帅完成签到,获得积分10
8秒前
飞兔发布了新的文献求助10
8秒前
huang发布了新的文献求助10
8秒前
ahxb发布了新的文献求助10
8秒前
王可完成签到,获得积分20
8秒前
Bluer完成签到,获得积分10
9秒前
9秒前
NZH关闭了NZH文献求助
9秒前
9秒前
10秒前
李健的小迷弟应助溯溯采纳,获得10
10秒前
hrs完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246