Multi-modal Modality-masked Diffusion Network for Brain MRI Synthesis with Random Modality Missing

模态(人机交互) 模式 缺少数据 计算机科学 分割 翻译(生物学) 人工智能 模式识别(心理学) 机器学习 社会科学 生物化学 化学 社会学 信使核糖核酸 基因
作者
X Meng,Kaicong Sun,Jun Xu,Xuming He,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2587-2598 被引量:3
标识
DOI:10.1109/tmi.2024.3368664
摘要

Synthesis of unavailable imaging modalities from available ones can generate modality-specific complementary information and enable multi-modality based medical images diagnosis or treatment. Existing generative methods for medical image synthesis are usually based on cross-modal translation between acquired and missing modalities. These methods are usually dedicated to specific missing modality and perform synthesis in one shot, which cannot deal with varying number of missing modalities flexibly and construct the mapping across modalities effectively. To address the above issues, in this paper, we propose a unified Multi-modal Modality-masked Diffusion Network (M2DN), tackling multi-modal synthesis from the perspective of "progressive whole-modality inpainting", instead of "cross-modal translation". Specifically, our M2DN considers the missing modalities as random noise and takes all the modalities as a unity in each reverse diffusion step. The proposed joint synthesis scheme performs synthesis for the missing modalities and self-reconstruction for the available ones, which not only enables synthesis for arbitrary missing scenarios, but also facilitates the construction of common latent space and enhances the model representation ability. Besides, we introduce a modality-mask scheme to encode availability status of each incoming modality explicitly in a binary mask, which is adopted as condition for the diffusion model to further enhance the synthesis performance of our M2DN for arbitrary missing scenarios. We carry out experiments on two public brain MRI datasets for synthesis and downstream segmentation tasks. Experimental results demonstrate that our M2DN outperforms the state-of-the-art models significantly and shows great generalizability for arbitrary missing modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻的听白完成签到,获得积分10
刚刚
袁睿韬发布了新的文献求助10
刚刚
斯文败类应助lc采纳,获得10
1秒前
Zengyuan完成签到,获得积分10
1秒前
1秒前
2秒前
mokLee63完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
liuxiaoer发布了新的文献求助10
4秒前
拉拉完成签到,获得积分10
5秒前
major发布了新的文献求助10
5秒前
23582发布了新的文献求助10
5秒前
yingzi发布了新的文献求助10
6秒前
害羞的凝竹完成签到 ,获得积分10
6秒前
张玉完成签到,获得积分10
6秒前
开心易真完成签到,获得积分20
8秒前
领导范儿应助有魅力老头采纳,获得10
8秒前
Archer发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
11秒前
活泼的白开水完成签到,获得积分10
12秒前
纳斯达克发布了新的文献求助10
12秒前
机智听芹发布了新的文献求助10
14秒前
CC完成签到,获得积分10
14秒前
14秒前
欣喜毛巾完成签到,获得积分10
15秒前
15秒前
15秒前
张玉发布了新的文献求助10
16秒前
17秒前
17秒前
silver_doctor发布了新的文献求助10
17秒前
purple完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891