已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Modal Modality-Masked Diffusion Network for Brain MRI Synthesis With Random Modality Missing

模态(人机交互) 模式 缺少数据 计算机科学 分割 翻译(生物学) 人工智能 模式识别(心理学) 机器学习 社会科学 生物化学 基因 信使核糖核酸 社会学 化学
作者
X Meng,Kaicong Sun,Jun Xu,Xuming He,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2587-2598 被引量:24
标识
DOI:10.1109/tmi.2024.3368664
摘要

Synthesis of unavailable imaging modalities from available ones can generate modality-specific complementary information and enable multi-modality based medical images diagnosis or treatment. Existing generative methods for medical image synthesis are usually based on cross-modal translation between acquired and missing modalities. These methods are usually dedicated to specific missing modality and perform synthesis in one shot, which cannot deal with varying number of missing modalities flexibly and construct the mapping across modalities effectively. To address the above issues, in this paper, we propose a unified Multi-modal Modality-masked Diffusion Network (M2DN), tackling multi-modal synthesis from the perspective of "progressive whole-modality inpainting", instead of "cross-modal translation". Specifically, our M2DN considers the missing modalities as random noise and takes all the modalities as a unity in each reverse diffusion step. The proposed joint synthesis scheme performs synthesis for the missing modalities and self-reconstruction for the available ones, which not only enables synthesis for arbitrary missing scenarios, but also facilitates the construction of common latent space and enhances the model representation ability. Besides, we introduce a modality-mask scheme to encode availability status of each incoming modality explicitly in a binary mask, which is adopted as condition for the diffusion model to further enhance the synthesis performance of our M2DN for arbitrary missing scenarios. We carry out experiments on two public brain MRI datasets for synthesis and downstream segmentation tasks. Experimental results demonstrate that our M2DN outperforms the state-of-the-art models significantly and shows great generalizability for arbitrary missing modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
逆天大脚发布了新的文献求助10
3秒前
小蘑菇应助大喵采纳,获得10
4秒前
Kristine完成签到 ,获得积分10
6秒前
VV2001发布了新的文献求助10
8秒前
Ying完成签到,获得积分10
11秒前
12秒前
dream完成签到 ,获得积分10
13秒前
13秒前
梁吃鱼完成签到,获得积分10
14秒前
14秒前
闲听花落完成签到,获得积分10
14秒前
Fng11发布了新的文献求助20
14秒前
我不到啊完成签到 ,获得积分10
15秒前
陈谦嵩完成签到 ,获得积分10
16秒前
Krim完成签到 ,获得积分0
16秒前
VV2001完成签到,获得积分10
16秒前
时尚白凡完成签到 ,获得积分10
16秒前
大喵发布了新的文献求助10
17秒前
搜集达人应助朴素的闭月采纳,获得10
19秒前
19秒前
24秒前
阿泽完成签到,获得积分10
24秒前
果汁橡皮糖完成签到,获得积分10
32秒前
医疗废物专用车乘客完成签到,获得积分10
33秒前
33秒前
leiluke应助饺子猫采纳,获得10
35秒前
shen完成签到 ,获得积分10
35秒前
诸天真发布了新的文献求助10
37秒前
JamesPei应助科研通管家采纳,获得10
38秒前
Criminology34应助科研通管家采纳,获得10
38秒前
xu应助科研通管家采纳,获得30
38秒前
abz完成签到 ,获得积分10
39秒前
40秒前
赵睿老婆完成签到 ,获得积分10
41秒前
浅呀呀呀完成签到 ,获得积分10
45秒前
Ccccn完成签到,获得积分10
45秒前
饺子猫完成签到,获得积分10
47秒前
51秒前
chuanxue发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258