Multi-Modal Modality-Masked Diffusion Network for Brain MRI Synthesis With Random Modality Missing

模态(人机交互) 模式 缺少数据 计算机科学 分割 翻译(生物学) 人工智能 模式识别(心理学) 机器学习 社会科学 生物化学 基因 信使核糖核酸 社会学 化学
作者
X Meng,Kaicong Sun,Jun Xu,Xuming He,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2587-2598 被引量:30
标识
DOI:10.1109/tmi.2024.3368664
摘要

Synthesis of unavailable imaging modalities from available ones can generate modality-specific complementary information and enable multi-modality based medical images diagnosis or treatment. Existing generative methods for medical image synthesis are usually based on cross-modal translation between acquired and missing modalities. These methods are usually dedicated to specific missing modality and perform synthesis in one shot, which cannot deal with varying number of missing modalities flexibly and construct the mapping across modalities effectively. To address the above issues, in this paper, we propose a unified Multi-modal Modality-masked Diffusion Network (M2DN), tackling multi-modal synthesis from the perspective of "progressive whole-modality inpainting", instead of "cross-modal translation". Specifically, our M2DN considers the missing modalities as random noise and takes all the modalities as a unity in each reverse diffusion step. The proposed joint synthesis scheme performs synthesis for the missing modalities and self-reconstruction for the available ones, which not only enables synthesis for arbitrary missing scenarios, but also facilitates the construction of common latent space and enhances the model representation ability. Besides, we introduce a modality-mask scheme to encode availability status of each incoming modality explicitly in a binary mask, which is adopted as condition for the diffusion model to further enhance the synthesis performance of our M2DN for arbitrary missing scenarios. We carry out experiments on two public brain MRI datasets for synthesis and downstream segmentation tasks. Experimental results demonstrate that our M2DN outperforms the state-of-the-art models significantly and shows great generalizability for arbitrary missing modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwf完成签到,获得积分10
刚刚
生椰拿铁不加生椰完成签到 ,获得积分10
2秒前
稳重的安萱完成签到,获得积分10
2秒前
小宇宙完成签到,获得积分10
3秒前
好好学习完成签到 ,获得积分10
4秒前
5秒前
脱壳金蝉完成签到,获得积分10
7秒前
lmx完成签到,获得积分20
7秒前
清风完成签到 ,获得积分10
8秒前
ding应助霍焱采纳,获得10
10秒前
无情静柏完成签到 ,获得积分20
11秒前
14秒前
彭于晏应助风华采纳,获得10
15秒前
xmhxpz完成签到,获得积分10
15秒前
17秒前
Youngen发布了新的文献求助10
18秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
online1881完成签到,获得积分10
21秒前
会飞的鱼完成签到,获得积分10
24秒前
小余同学完成签到 ,获得积分10
25秒前
吉涛发布了新的文献求助10
26秒前
田...完成签到,获得积分10
26秒前
阔达如柏完成签到,获得积分10
27秒前
wy完成签到,获得积分10
28秒前
Ammon完成签到,获得积分10
29秒前
明理小凝完成签到 ,获得积分10
29秒前
大苗完成签到,获得积分10
31秒前
曾经的凌青完成签到 ,获得积分10
32秒前
33秒前
体贴的手链完成签到,获得积分10
33秒前
33秒前
Youngen完成签到,获得积分10
34秒前
小樊爱摸鱼完成签到,获得积分10
34秒前
35秒前
35秒前
35秒前
35秒前
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789530
求助须知:如何正确求助?哪些是违规求助? 5720862
关于积分的说明 15474819
捐赠科研通 4917334
什么是DOI,文献DOI怎么找? 2646933
邀请新用户注册赠送积分活动 1594542
关于科研通互助平台的介绍 1549081