Multi-modal Modality-masked Diffusion Network for Brain MRI Synthesis with Random Modality Missing

模态(人机交互) 模式 缺少数据 计算机科学 分割 翻译(生物学) 人工智能 模式识别(心理学) 机器学习 社会科学 生物化学 化学 社会学 信使核糖核酸 基因
作者
X Meng,Kaicong Sun,Jun Xu,Xuming He,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2587-2598
标识
DOI:10.1109/tmi.2024.3368664
摘要

Synthesis of unavailable imaging modalities from available ones can generate modality-specific complementary information and enable multi-modality based medical images diagnosis or treatment. Existing generative methods for medical image synthesis are usually based on cross-modal translation between acquired and missing modalities. These methods are usually dedicated to specific missing modality and perform synthesis in one shot, which cannot deal with varying number of missing modalities flexibly and construct the mapping across modalities effectively. To address the above issues, in this paper, we propose a unified Multi-modal Modality-masked Diffusion Network (M2DN), tackling multi-modal synthesis from the perspective of "progressive whole-modality inpainting", instead of "cross-modal translation". Specifically, our M2DN considers the missing modalities as random noise and takes all the modalities as a unity in each reverse diffusion step. The proposed joint synthesis scheme performs synthesis for the missing modalities and self-reconstruction for the available ones, which not only enables synthesis for arbitrary missing scenarios, but also facilitates the construction of common latent space and enhances the model representation ability. Besides, we introduce a modality-mask scheme to encode availability status of each incoming modality explicitly in a binary mask, which is adopted as condition for the diffusion model to further enhance the synthesis performance of our M2DN for arbitrary missing scenarios. We carry out experiments on two public brain MRI datasets for synthesis and downstream segmentation tasks. Experimental results demonstrate that our M2DN outperforms the state-of-the-art models significantly and shows great generalizability for arbitrary missing modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助深夜空想家采纳,获得10
1秒前
脑洞疼应助紫荆采纳,获得30
2秒前
芒果椰奶冻完成签到,获得积分10
2秒前
田様应助快乐小狗采纳,获得10
3秒前
3秒前
4秒前
无处不在完成签到 ,获得积分10
6秒前
儒雅谷云完成签到 ,获得积分10
6秒前
壹号完成签到,获得积分10
8秒前
ZZWWW完成签到,获得积分20
8秒前
8秒前
9秒前
帅气之槐完成签到,获得积分10
9秒前
yr发布了新的文献求助10
9秒前
天天快乐应助ardejiang采纳,获得10
10秒前
10秒前
11秒前
11秒前
靓丽紫雪发布了新的文献求助10
12秒前
不吃香菜发布了新的文献求助30
14秒前
john完成签到,获得积分10
14秒前
想象之中发布了新的文献求助10
14秒前
15秒前
zilong发布了新的文献求助10
15秒前
lcx发布了新的文献求助10
16秒前
oceanao应助噜噜晓采纳,获得10
16秒前
脑洞疼应助伊人采纳,获得10
16秒前
john发布了新的文献求助10
17秒前
小樊没烦恼完成签到 ,获得积分10
17秒前
紫荆发布了新的文献求助30
17秒前
ding应助小逗比采纳,获得10
18秒前
翠翠发布了新的文献求助10
20秒前
雪白的乐巧完成签到 ,获得积分10
21秒前
22秒前
Hello应助zilong采纳,获得10
23秒前
23秒前
怕孤单的Hannah完成签到,获得积分10
24秒前
24秒前
25秒前
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157384
求助须知:如何正确求助?哪些是违规求助? 2808832
关于积分的说明 7878535
捐赠科研通 2467168
什么是DOI,文献DOI怎么找? 1313255
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919