Multi-Modal Modality-Masked Diffusion Network for Brain MRI Synthesis With Random Modality Missing

模态(人机交互) 模式 缺少数据 计算机科学 分割 翻译(生物学) 人工智能 模式识别(心理学) 机器学习 社会科学 生物化学 化学 社会学 信使核糖核酸 基因
作者
X Meng,Kaicong Sun,Jun Xu,Xuming He,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2587-2598 被引量:24
标识
DOI:10.1109/tmi.2024.3368664
摘要

Synthesis of unavailable imaging modalities from available ones can generate modality-specific complementary information and enable multi-modality based medical images diagnosis or treatment. Existing generative methods for medical image synthesis are usually based on cross-modal translation between acquired and missing modalities. These methods are usually dedicated to specific missing modality and perform synthesis in one shot, which cannot deal with varying number of missing modalities flexibly and construct the mapping across modalities effectively. To address the above issues, in this paper, we propose a unified Multi-modal Modality-masked Diffusion Network (M2DN), tackling multi-modal synthesis from the perspective of "progressive whole-modality inpainting", instead of "cross-modal translation". Specifically, our M2DN considers the missing modalities as random noise and takes all the modalities as a unity in each reverse diffusion step. The proposed joint synthesis scheme performs synthesis for the missing modalities and self-reconstruction for the available ones, which not only enables synthesis for arbitrary missing scenarios, but also facilitates the construction of common latent space and enhances the model representation ability. Besides, we introduce a modality-mask scheme to encode availability status of each incoming modality explicitly in a binary mask, which is adopted as condition for the diffusion model to further enhance the synthesis performance of our M2DN for arbitrary missing scenarios. We carry out experiments on two public brain MRI datasets for synthesis and downstream segmentation tasks. Experimental results demonstrate that our M2DN outperforms the state-of-the-art models significantly and shows great generalizability for arbitrary missing modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王一博发布了新的文献求助10
刚刚
贾哲宇发布了新的文献求助10
1秒前
蓝淡定完成签到,获得积分10
1秒前
shhoing应助weidingge2011采纳,获得10
1秒前
复杂储发布了新的文献求助10
1秒前
寒月如雪发布了新的文献求助10
2秒前
2秒前
mengzhao完成签到,获得积分10
2秒前
思源应助鲸鱼打滚采纳,获得10
3秒前
小马甲应助啵啵采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
Camellia发布了新的文献求助10
4秒前
汉堡包应助元煜祺采纳,获得10
4秒前
orixero应助三乐采纳,获得10
4秒前
阿托品完成签到,获得积分10
4秒前
少年去游荡完成签到,获得积分10
5秒前
纯真心情完成签到,获得积分20
5秒前
FashionBoy应助sx采纳,获得10
5秒前
奋斗花生发布了新的文献求助10
6秒前
6秒前
小猴子完成签到,获得积分10
6秒前
6秒前
6秒前
ll发布了新的文献求助10
7秒前
Mic应助engine采纳,获得10
7秒前
why完成签到 ,获得积分10
7秒前
土土b发布了新的文献求助10
7秒前
hqq发布了新的文献求助10
7秒前
无趣发布了新的文献求助30
7秒前
7秒前
酷波er应助追光采纳,获得10
8秒前
开朗发卡完成签到,获得积分10
9秒前
Lucas应助蓝淡定采纳,获得10
9秒前
Amosummer发布了新的文献求助10
9秒前
梓翔发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957