可见的
密度矩阵
计算机科学
表征(材料科学)
基质(化学分析)
量子层析成像
古特里特
量子
联轴节(管道)
统计物理学
量子态
物理
量子力学
量子位元
材料科学
光学
复合材料
冶金
作者
Liang Xu,Ming-Ti Zhou,Runxia Tao,Zhang Zhong,B. G. Wang,Zhang Cao,Hongkuan Xia,Q. H. Wang,Hongbing Zhan,A.Q. Zhang,Shang Yu,Nanyang Xu,Ying Dong,Cheng Ren,Lijian Zhang
标识
DOI:10.1103/physrevlett.132.030201
摘要
Sequential weak measurements allow for the direct extraction of individual density-matrix elements, rather than relying on global reconstruction of the entire density matrix, which opens a new avenue for the characterization of quantum systems. Nevertheless, extending the sequential scheme to multiqudit quantum systems is challenging due to the requirement of multiple coupling processes for each qudit and the lack of appropriate precision evaluation. To address these issues, we propose a resource-efficient scheme (RES) that directly characterizes the density matrix of general multiqudit systems while optimizing measurements and establishing a feasible estimation analysis. In the RES, an efficient observable of the quantum system is constructed such that a single meter state coupled to each qudit is sufficient to extract the corresponding density-matrix element. An appropriate model based on the statistical distribution of errors is utilized to evaluate the precision and feasibility of the scheme. We have experimentally applied the RES to the direct characterization of general single-photon qutrit states and two-photon entangled states. The results show that the RES outperforms sequential schemes in terms of efficiency and precision in both weak- and strong-coupling scenarios. This Letter sheds new light on the practical characterization of large-scale quantum systems and the investigation of their nonclassical properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI