已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast subsampling strategy for point cloud based on novel octree coding

计算机科学 点云 算法 八叉树 特征(语言学) 节点(物理) 人工智能 语言学 结构工程 工程类 哲学
作者
Zheng Zhen,Chengjun Wang,Bingting Zha,Haodong Liu,He Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045028-045028
标识
DOI:10.1088/1361-6501/ad1f28
摘要

Abstract Owing to the continuous expansion in data scale, the calculation, storage, and transmission of 3D data have been plagued by numerous issues. The point cloud data, in particular, often contain duplicated and anomalous points, which can hinder tasks such as measurement. To address this issue, it is crucial to utilize point cloud pre-processing methods that combine subsampling and denoising. These methods help obtain clean, evenly distributed, and compact points to enhance the accuracy of the data. In this study, an efficient point cloud subsampling method is proposed that combines point cloud denoising capabilities. This method can effectively preserve salient features while improving the quality of point cloud data. By constructing the octree structure of the point cloud, the corresponding node code is obtained according to the spatial coordinates of the point cloud, and the feature vector of the node is calculated based on the analysis of covariance. Node feature similarity is introduced to distinguish the node into feature and non-feature nodes, forming the node feature code, and the layer threshold is introduced to filter outliers. Experimental results demonstrate that our proposed algorithm has a time ratio of over four compared to the curvature-based algorithm. Additionally, it exhibits an average grey entropy that is 1.6 × e 3 lower than that of the random sampling method. And considering both time cost and subsampling effectiveness, proposed algorithm outperforms the state-of-the-art subsampling strategies, such as Approximate Intrinsic Voxel Structure and SampleNet. This approach is effective in removing noise while preserving important features, thereby reducing overall size of the point cloud. The high computational efficiency of our algorithm makes it a valuable reference for fast and precise measurements that require timeliness. It successfully addresses the challenges posed by the continuous expansion of data scale and offers significant advantages over existing subsampling methods. By improving the quality of point cloud data, our algorithm contributes to reducing complexity, enables efficient and accurate measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
毕业就行发布了新的文献求助30
4秒前
LuoYR@SZU发布了新的文献求助10
4秒前
花生王子完成签到 ,获得积分10
8秒前
孔复天发布了新的文献求助10
10秒前
11秒前
LuoYR@SZU完成签到,获得积分10
14秒前
Lucifer完成签到,获得积分10
15秒前
淑儿哥哥发布了新的文献求助10
18秒前
Jeffery完成签到,获得积分10
19秒前
LYL完成签到,获得积分10
21秒前
楼翩跹完成签到 ,获得积分10
22秒前
周粥完成签到,获得积分10
22秒前
骆十八完成签到,获得积分10
22秒前
背后的寻云完成签到,获得积分20
25秒前
孔复天完成签到,获得积分10
25秒前
Hello应助jiaolulu采纳,获得10
28秒前
今后应助淑儿哥哥采纳,获得10
32秒前
平常的苡完成签到,获得积分10
34秒前
cleff发布了新的文献求助10
37秒前
ccerr完成签到,获得积分10
38秒前
科目三应助木子采纳,获得10
38秒前
羽生结弦的馨馨完成签到,获得积分10
41秒前
醉倒天瓢完成签到 ,获得积分10
42秒前
45秒前
体育爱好者完成签到,获得积分10
46秒前
47秒前
Liu完成签到 ,获得积分10
47秒前
ChouNic完成签到 ,获得积分10
48秒前
shuhaha完成签到,获得积分10
48秒前
糖伯虎完成签到 ,获得积分10
48秒前
木子完成签到,获得积分20
48秒前
czb666发布了新的文献求助10
50秒前
51秒前
木子发布了新的文献求助10
52秒前
一小部分我完成签到 ,获得积分10
53秒前
喜宝完成签到 ,获得积分10
54秒前
飘逸问薇完成签到 ,获得积分10
1分钟前
峰feng完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946587
关于积分的说明 8530889
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665312
邀请新用户注册赠送积分活动 650855