Fast subsampling strategy for point cloud based on novel octree coding

计算机科学 点云 算法 八叉树 特征(语言学) 节点(物理) 人工智能 哲学 语言学 结构工程 工程类
作者
Zheng Zhen,Chengjun Wang,Bingting Zha,Haodong Liu,He Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045028-045028
标识
DOI:10.1088/1361-6501/ad1f28
摘要

Abstract Owing to the continuous expansion in data scale, the calculation, storage, and transmission of 3D data have been plagued by numerous issues. The point cloud data, in particular, often contain duplicated and anomalous points, which can hinder tasks such as measurement. To address this issue, it is crucial to utilize point cloud pre-processing methods that combine subsampling and denoising. These methods help obtain clean, evenly distributed, and compact points to enhance the accuracy of the data. In this study, an efficient point cloud subsampling method is proposed that combines point cloud denoising capabilities. This method can effectively preserve salient features while improving the quality of point cloud data. By constructing the octree structure of the point cloud, the corresponding node code is obtained according to the spatial coordinates of the point cloud, and the feature vector of the node is calculated based on the analysis of covariance. Node feature similarity is introduced to distinguish the node into feature and non-feature nodes, forming the node feature code, and the layer threshold is introduced to filter outliers. Experimental results demonstrate that our proposed algorithm has a time ratio of over four compared to the curvature-based algorithm. Additionally, it exhibits an average grey entropy that is 1.6 × e 3 lower than that of the random sampling method. And considering both time cost and subsampling effectiveness, proposed algorithm outperforms the state-of-the-art subsampling strategies, such as Approximate Intrinsic Voxel Structure and SampleNet. This approach is effective in removing noise while preserving important features, thereby reducing overall size of the point cloud. The high computational efficiency of our algorithm makes it a valuable reference for fast and precise measurements that require timeliness. It successfully addresses the challenges posed by the continuous expansion of data scale and offers significant advantages over existing subsampling methods. By improving the quality of point cloud data, our algorithm contributes to reducing complexity, enables efficient and accurate measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
清爽伯云应助卜钊采纳,获得10
1秒前
black发布了新的文献求助10
2秒前
无心的浩轩完成签到,获得积分10
2秒前
852应助zanie采纳,获得10
2秒前
海波完成签到,获得积分10
2秒前
科研小白发布了新的文献求助10
3秒前
充电宝应助小苑采纳,获得10
3秒前
qqwdss完成签到,获得积分10
4秒前
小北完成签到 ,获得积分10
4秒前
4秒前
慕青应助andrewliu采纳,获得30
4秒前
4秒前
LaLaC完成签到,获得积分10
5秒前
derrrrrsin完成签到,获得积分10
5秒前
5秒前
anubisi发布了新的文献求助10
5秒前
6秒前
润润完成签到 ,获得积分10
6秒前
安静的飞薇完成签到,获得积分10
6秒前
坦率的嫣娆完成签到,获得积分20
6秒前
Lxx完成签到,获得积分10
7秒前
彭于晏应助阿森采纳,获得10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
九九完成签到,获得积分10
9秒前
ZZ发布了新的文献求助10
9秒前
yyy发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
皮皮灰熊完成签到,获得积分10
10秒前
无聊的依瑶完成签到,获得积分10
11秒前
完美世界应助black采纳,获得10
11秒前
weiwei发布了新的文献求助10
11秒前
李牧发布了新的文献求助10
11秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917