Fast subsampling strategy for point cloud based on novel octree coding

计算机科学 点云 算法 八叉树 特征(语言学) 节点(物理) 人工智能 语言学 结构工程 工程类 哲学
作者
Zheng Zhen,Chengjun Wang,Bingting Zha,Haodong Liu,He Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045028-045028
标识
DOI:10.1088/1361-6501/ad1f28
摘要

Abstract Owing to the continuous expansion in data scale, the calculation, storage, and transmission of 3D data have been plagued by numerous issues. The point cloud data, in particular, often contain duplicated and anomalous points, which can hinder tasks such as measurement. To address this issue, it is crucial to utilize point cloud pre-processing methods that combine subsampling and denoising. These methods help obtain clean, evenly distributed, and compact points to enhance the accuracy of the data. In this study, an efficient point cloud subsampling method is proposed that combines point cloud denoising capabilities. This method can effectively preserve salient features while improving the quality of point cloud data. By constructing the octree structure of the point cloud, the corresponding node code is obtained according to the spatial coordinates of the point cloud, and the feature vector of the node is calculated based on the analysis of covariance. Node feature similarity is introduced to distinguish the node into feature and non-feature nodes, forming the node feature code, and the layer threshold is introduced to filter outliers. Experimental results demonstrate that our proposed algorithm has a time ratio of over four compared to the curvature-based algorithm. Additionally, it exhibits an average grey entropy that is 1.6 × e 3 lower than that of the random sampling method. And considering both time cost and subsampling effectiveness, proposed algorithm outperforms the state-of-the-art subsampling strategies, such as Approximate Intrinsic Voxel Structure and SampleNet. This approach is effective in removing noise while preserving important features, thereby reducing overall size of the point cloud. The high computational efficiency of our algorithm makes it a valuable reference for fast and precise measurements that require timeliness. It successfully addresses the challenges posed by the continuous expansion of data scale and offers significant advantages over existing subsampling methods. By improving the quality of point cloud data, our algorithm contributes to reducing complexity, enables efficient and accurate measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sandy发布了新的文献求助10
1秒前
田様应助科研狗采纳,获得10
1秒前
2秒前
3秒前
快乐滑板应助科研通管家采纳,获得10
3秒前
沙漠玫瑰发布了新的文献求助10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
快乐滑板应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
我是老大应助皮崇知采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Hello应助乐观的雨采纳,获得10
4秒前
弘木发布了新的文献求助10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
快乐滑板应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
5秒前
May应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
在水一方应助善良曼寒采纳,获得10
5秒前
5秒前
七仔完成签到,获得积分10
6秒前
6秒前
传奇3应助yyydd采纳,获得10
7秒前
牛顿的苹果完成签到,获得积分10
7秒前
scq发布了新的文献求助10
8秒前
科研通AI2S应助ihtw采纳,获得10
8秒前
8秒前
陶醉黑猫完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
香蕉秋柳发布了新的文献求助10
10秒前
holycale完成签到,获得积分10
11秒前
希望天下0贩的0应助He采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958357
求助须知:如何正确求助?哪些是违规求助? 3504636
关于积分的说明 11119121
捐赠科研通 3235826
什么是DOI,文献DOI怎么找? 1788534
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802600