Including soil depth as a predictor variable increases prediction accuracy of SOC stocks

变量(数学) 计量经济学 环境科学 土壤科学 统计 数学 数学分析
作者
Jiaying Li,Feng Liu,Wenjiao Shi,Zhengping Du,Xiangzheng Deng,Yuxin Ma,Xiaoli Shi,Mo Zhang,Qiquan Li
出处
期刊:Soil & Tillage Research [Elsevier BV]
卷期号:238: 106007-106007 被引量:3
标识
DOI:10.1016/j.still.2024.106007
摘要

Accurate estimates of soil organic carbon (SOC) stocks are important in understanding terrestrial carbon cycling. Based on the fundamental theorem of surfaces, an alternative method, high accuracy surface modelling (HASM) combined with soil depth information was applied to predict the spatial pattern of SOC stocks in Hebei Province, China. In this study, we collected 434 soil samples and key environmental covariates related to soil-forming factors (soil, climate, organisms, topography, and soil depth information) in the study area, and compared the accuracy of 16 spatial prediction models (including single models, hybrid models, and HASM combined with single or hybrid models) on the spatial distribution of SOC stocks. The results confirmed that the method of HASM combined with the generalized additive model (GAM) with soil depth covariate (HASM_GAMD) achieved a better performance than other methods at soil depths of 0–30, 0–100 and 0–200 cm. The root-mean-square error and coefficient of determination values of predicting the spatial pattern of SOC stocks by the HASM_GAMD model demonstrated a 43% and 49% improvement, respectively, compared with models without depth information. The prediction uncertainty of the HASM_GAMD model based on 90% prediction interval was lower than that of other models. The HASM_GAMD model excels in addressing not only the nonlinear relationship between covariates and SOC stocks, but also in incorporating point observation data that varies with soil depth. Furthermore, the model conducts modelling by integrating surface and optimal control theories. Results obtained from the HASM_GAMD demonstrated that the SOC stocks in Hebei Province amounted to 1449.08 Tg C. Our study introduces an alternative model for modelling of SOC stocks and our findings are a valuable reference for assessing carbon stocks in Hebei Province to support sustainable land management and climate change mitigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力翼发布了新的文献求助10
刚刚
月光完成签到,获得积分10
刚刚
小周完成签到,获得积分20
刚刚
Agnesma完成签到,获得积分10
刚刚
makenemore完成签到,获得积分10
刚刚
炸毛可乐发布了新的文献求助10
1秒前
limingming发布了新的文献求助10
1秒前
懦弱的难敌完成签到,获得积分10
1秒前
时尚的哈密瓜完成签到,获得积分10
2秒前
5秒前
fuguier完成签到,获得积分10
6秒前
黄大小姐完成签到,获得积分10
7秒前
无限的寄真完成签到 ,获得积分10
8秒前
八点必起完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
贾舒涵完成签到,获得积分10
8秒前
善良的金鱼完成签到,获得积分10
8秒前
正直涵菱完成签到 ,获得积分10
10秒前
柔弱紊发布了新的文献求助10
10秒前
yao chen完成签到,获得积分10
11秒前
正直的松鼠完成签到 ,获得积分10
11秒前
luluyang完成签到 ,获得积分10
12秒前
fan完成签到,获得积分20
12秒前
LZY完成签到,获得积分10
12秒前
瘦瘦的迎南完成签到 ,获得积分10
13秒前
木木杉完成签到 ,获得积分10
13秒前
Liu应助善良的金鱼采纳,获得10
14秒前
14秒前
炸毛可乐完成签到,获得积分20
15秒前
大模型应助GFY采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
熊博士完成签到,获得积分10
16秒前
entang完成签到,获得积分10
16秒前
买了束花完成签到,获得积分10
17秒前
甜甜的大米完成签到,获得积分10
17秒前
瓦力文完成签到,获得积分10
18秒前
zpq完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957196
求助须知:如何正确求助?哪些是违规求助? 3503244
关于积分的说明 11111843
捐赠科研通 3234361
什么是DOI,文献DOI怎么找? 1787887
邀请新用户注册赠送积分活动 870815
科研通“疑难数据库(出版商)”最低求助积分说明 802330