Including soil depth as a predictor variable increases prediction accuracy of SOC stocks

变量(数学) 计量经济学 环境科学 土壤科学 统计 数学 数学分析
作者
Jiaying Li,Feng Liu,Wenjiao Shi,Zhengping Du,Xiangzheng Deng,Yuxin Ma,Xiaoli Shi,Mo Zhang,Qiquan Li
出处
期刊:Soil & Tillage Research [Elsevier BV]
卷期号:238: 106007-106007 被引量:3
标识
DOI:10.1016/j.still.2024.106007
摘要

Accurate estimates of soil organic carbon (SOC) stocks are important in understanding terrestrial carbon cycling. Based on the fundamental theorem of surfaces, an alternative method, high accuracy surface modelling (HASM) combined with soil depth information was applied to predict the spatial pattern of SOC stocks in Hebei Province, China. In this study, we collected 434 soil samples and key environmental covariates related to soil-forming factors (soil, climate, organisms, topography, and soil depth information) in the study area, and compared the accuracy of 16 spatial prediction models (including single models, hybrid models, and HASM combined with single or hybrid models) on the spatial distribution of SOC stocks. The results confirmed that the method of HASM combined with the generalized additive model (GAM) with soil depth covariate (HASM_GAMD) achieved a better performance than other methods at soil depths of 0–30, 0–100 and 0–200 cm. The root-mean-square error and coefficient of determination values of predicting the spatial pattern of SOC stocks by the HASM_GAMD model demonstrated a 43% and 49% improvement, respectively, compared with models without depth information. The prediction uncertainty of the HASM_GAMD model based on 90% prediction interval was lower than that of other models. The HASM_GAMD model excels in addressing not only the nonlinear relationship between covariates and SOC stocks, but also in incorporating point observation data that varies with soil depth. Furthermore, the model conducts modelling by integrating surface and optimal control theories. Results obtained from the HASM_GAMD demonstrated that the SOC stocks in Hebei Province amounted to 1449.08 Tg C. Our study introduces an alternative model for modelling of SOC stocks and our findings are a valuable reference for assessing carbon stocks in Hebei Province to support sustainable land management and climate change mitigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我比脚酷完成签到,获得积分10
1秒前
aa发布了新的文献求助10
1秒前
球宝完成签到,获得积分10
1秒前
浮游应助王誉霖采纳,获得10
1秒前
拾柒完成签到,获得积分10
2秒前
小一完成签到 ,获得积分10
2秒前
boltos完成签到,获得积分10
2秒前
2秒前
zjkzh完成签到,获得积分10
2秒前
高挑的向真完成签到,获得积分10
2秒前
Dawei_YZU完成签到,获得积分10
2秒前
2秒前
3秒前
研友_Lpapjn完成签到,获得积分10
3秒前
完美世界应助zx采纳,获得10
6秒前
6秒前
6秒前
友好的易槐完成签到,获得积分10
6秒前
7秒前
ben完成签到,获得积分10
7秒前
XYN1发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
bonnie应助LLY采纳,获得50
9秒前
9秒前
kjaiod完成签到,获得积分10
9秒前
林伯格完成签到,获得积分10
10秒前
科研通AI6应助wangyiren采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
顾矜应助无心的夏烟采纳,获得10
12秒前
cy__发布了新的文献求助10
12秒前
科研通AI2S应助赣南橙采纳,获得10
13秒前
快记晓霜应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
13秒前
曾经青柏完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260690
求助须知:如何正确求助?哪些是违规求助? 4422036
关于积分的说明 13764988
捐赠科研通 4296360
什么是DOI,文献DOI怎么找? 2357306
邀请新用户注册赠送积分活动 1353657
关于科研通互助平台的介绍 1314921