Including soil depth as a predictor variable increases prediction accuracy of SOC stocks

变量(数学) 计量经济学 环境科学 土壤科学 统计 数学 数学分析
作者
Jiaying Li,Feng Liu,Wenjiao Shi,Zhengping Du,Xiangzheng Deng,Yuxin Ma,Xiaoli Shi,Mo Zhang,Qiquan Li
出处
期刊:Soil & Tillage Research [Elsevier]
卷期号:238: 106007-106007 被引量:3
标识
DOI:10.1016/j.still.2024.106007
摘要

Accurate estimates of soil organic carbon (SOC) stocks are important in understanding terrestrial carbon cycling. Based on the fundamental theorem of surfaces, an alternative method, high accuracy surface modelling (HASM) combined with soil depth information was applied to predict the spatial pattern of SOC stocks in Hebei Province, China. In this study, we collected 434 soil samples and key environmental covariates related to soil-forming factors (soil, climate, organisms, topography, and soil depth information) in the study area, and compared the accuracy of 16 spatial prediction models (including single models, hybrid models, and HASM combined with single or hybrid models) on the spatial distribution of SOC stocks. The results confirmed that the method of HASM combined with the generalized additive model (GAM) with soil depth covariate (HASM_GAMD) achieved a better performance than other methods at soil depths of 0–30, 0–100 and 0–200 cm. The root-mean-square error and coefficient of determination values of predicting the spatial pattern of SOC stocks by the HASM_GAMD model demonstrated a 43% and 49% improvement, respectively, compared with models without depth information. The prediction uncertainty of the HASM_GAMD model based on 90% prediction interval was lower than that of other models. The HASM_GAMD model excels in addressing not only the nonlinear relationship between covariates and SOC stocks, but also in incorporating point observation data that varies with soil depth. Furthermore, the model conducts modelling by integrating surface and optimal control theories. Results obtained from the HASM_GAMD demonstrated that the SOC stocks in Hebei Province amounted to 1449.08 Tg C. Our study introduces an alternative model for modelling of SOC stocks and our findings are a valuable reference for assessing carbon stocks in Hebei Province to support sustainable land management and climate change mitigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wellscurry发布了新的文献求助10
刚刚
乔磊发布了新的文献求助10
1秒前
1秒前
Micale完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
心系天下发布了新的文献求助10
4秒前
坚强水香完成签到 ,获得积分10
4秒前
大猫不吃鱼完成签到 ,获得积分10
5秒前
6秒前
11发布了新的文献求助10
6秒前
1122完成签到,获得积分10
7秒前
充电宝应助海上聆风采纳,获得10
7秒前
9秒前
在水一方应助奇迹行者采纳,获得10
10秒前
冷静冷风完成签到 ,获得积分10
10秒前
Doctor_jie完成签到 ,获得积分10
11秒前
阔达的扬完成签到,获得积分10
11秒前
乔磊完成签到,获得积分10
11秒前
yz完成签到,获得积分10
12秒前
12秒前
13秒前
承乐应助Ashley采纳,获得10
14秒前
14秒前
烂漫的涫完成签到 ,获得积分10
15秒前
科研通AI6应助欢喜的梦旋采纳,获得10
15秒前
11完成签到,获得积分20
15秒前
NexusExplorer应助Snoopy采纳,获得10
16秒前
赘婿应助北海西贝采纳,获得10
17秒前
1122发布了新的文献求助10
17秒前
雪白元龙完成签到,获得积分10
17秒前
18秒前
18秒前
Dahlia完成签到,获得积分10
19秒前
wellscurry完成签到,获得积分10
19秒前
20秒前
梦XING发布了新的文献求助10
21秒前
Sigar完成签到 ,获得积分10
22秒前
情怀应助llya采纳,获得10
22秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603755
求助须知:如何正确求助?哪些是违规求助? 4688731
关于积分的说明 14855695
捐赠科研通 4694961
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814