Including soil depth as a predictor variable increases prediction accuracy of SOC stocks

变量(数学) 计量经济学 环境科学 土壤科学 统计 数学 数学分析
作者
Jiaying Li,Feng Liu,Wenjiao Shi,Zhengping Du,Xiangzheng Deng,Yuxin Ma,Xiaoli Shi,Mo Zhang,Qiquan Li
出处
期刊:Soil & Tillage Research [Elsevier]
卷期号:238: 106007-106007
标识
DOI:10.1016/j.still.2024.106007
摘要

Accurate estimates of soil organic carbon (SOC) stocks are important in understanding terrestrial carbon cycling. Based on the fundamental theorem of surfaces, an alternative method, high accuracy surface modelling (HASM) combined with soil depth information was applied to predict the spatial pattern of SOC stocks in Hebei Province, China. In this study, we collected 434 soil samples and key environmental covariates related to soil-forming factors (soil, climate, organisms, topography, and soil depth information) in the study area, and compared the accuracy of 16 spatial prediction models (including single models, hybrid models, and HASM combined with single or hybrid models) on the spatial distribution of SOC stocks. The results confirmed that the method of HASM combined with the generalized additive model (GAM) with soil depth covariate (HASM_GAMD) achieved a better performance than other methods at soil depths of 0–30, 0–100 and 0–200 cm. The root-mean-square error and coefficient of determination values of predicting the spatial pattern of SOC stocks by the HASM_GAMD model demonstrated a 43% and 49% improvement, respectively, compared with models without depth information. The prediction uncertainty of the HASM_GAMD model based on 90% prediction interval was lower than that of other models. The HASM_GAMD model excels in addressing not only the nonlinear relationship between covariates and SOC stocks, but also in incorporating point observation data that varies with soil depth. Furthermore, the model conducts modelling by integrating surface and optimal control theories. Results obtained from the HASM_GAMD demonstrated that the SOC stocks in Hebei Province amounted to 1449.08 Tg C. Our study introduces an alternative model for modelling of SOC stocks and our findings are a valuable reference for assessing carbon stocks in Hebei Province to support sustainable land management and climate change mitigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直毛豆发布了新的文献求助10
1秒前
LeuinPonsgi完成签到,获得积分10
2秒前
一一完成签到,获得积分10
2秒前
3秒前
5秒前
巴卡巴卡发布了新的文献求助10
5秒前
5秒前
5秒前
36456657应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
SOESAN应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
不配.应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
缪尹盛完成签到,获得积分10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
大力蚂蚁完成签到 ,获得积分10
7秒前
haha完成签到,获得积分10
8秒前
123by完成签到,获得积分10
8秒前
luo发布了新的文献求助10
8秒前
8秒前
姜且完成签到 ,获得积分10
8秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3208180
求助须知:如何正确求助?哪些是违规求助? 2857694
关于积分的说明 8111864
捐赠科研通 2523214
什么是DOI,文献DOI怎么找? 1356505
科研通“疑难数据库(出版商)”最低求助积分说明 642411
邀请新用户注册赠送积分活动 613834