Slide-tags enables single-nucleus barcoding for multimodal spatial genomics

染色质 计算生物学 生物 转录组 基因组学 基因表达 基因组 基因 遗传学
作者
Andrew J. C. Russell,Jackson A. Weir,Naeem Nadaf,Matthew Shabet,Vipin Kumar,Sandeep Kambhampati,Ruth Raichur,Giovanni Marrero,Sophia Liu,Karol S. Balderrama,Charles Vanderburg,Vignesh Shanmugam,Luyi Tian,J. Bryan Iorgulescu,Charles H. Yoon,Catherine J. Wu,Evan Z. Macosko,Fei Chen
出处
期刊:Nature [Springer Nature]
卷期号:625 (7993): 101-109 被引量:58
标识
DOI:10.1038/s41586-023-06837-4
摘要

Abstract Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed 1–6 . However, missing from these measurements is the ability to routinely and easily spatially localize these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as an input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 μm spatial resolution and delivered whole-transcriptome data that are indistinguishable in quality from ordinary single-nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualized receptor–ligand interactions driving B cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost any single-cell measurement technology. As a proof of principle, we performed multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences in the same cells from metastatic melanoma, identifying transcription factor motifs driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fundamental发布了新的文献求助10
1秒前
咩咩发布了新的文献求助10
1秒前
kingmin应助金鸡奖采纳,获得10
1秒前
喜悦蚂蚁完成签到,获得积分10
2秒前
赘婿应助拼搏向前采纳,获得10
2秒前
2秒前
2秒前
路十三完成签到 ,获得积分10
3秒前
Lucas应助Sophia采纳,获得10
4秒前
lan发布了新的文献求助10
4秒前
金容发布了新的文献求助10
4秒前
京阿尼发布了新的文献求助10
5秒前
好久不见发布了新的文献求助10
5秒前
小二郎应助轩辕德地采纳,获得10
5秒前
超级的飞飞完成签到,获得积分10
8秒前
9秒前
9秒前
金容完成签到,获得积分10
10秒前
细雨听风完成签到,获得积分10
10秒前
含糊的白安完成签到,获得积分10
11秒前
迟大猫应助xzn1123采纳,获得30
12秒前
12秒前
12秒前
科研通AI5应助李李采纳,获得50
13秒前
祖f完成签到,获得积分10
13秒前
阿莫西林胶囊完成签到,获得积分10
14秒前
jason完成签到,获得积分10
14秒前
14秒前
科研通AI5应助吴岳采纳,获得10
15秒前
Sheila发布了新的文献求助10
15秒前
甜美的海瑶完成签到,获得积分10
16秒前
16秒前
16秒前
张牧之完成签到 ,获得积分10
16秒前
yuyukeke完成签到,获得积分10
17秒前
17秒前
沉默的婴完成签到 ,获得积分10
17秒前
18秒前
19秒前
Dita完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808