SecureNet: Proactive intellectual property protection and model security defense for DNNs based on backdoor learning

后门 计算机科学 钥匙(锁) 许可证 计算机安全 知识产权 人工智能 机器学习 操作系统
作者
Peihao Li,Jie Huang,Huaqing Wu,Zeping Zhang,Chunyang Qi
出处
期刊:Neural Networks [Elsevier BV]
卷期号:: 106199-106199
标识
DOI:10.1016/j.neunet.2024.106199
摘要

With the widespread application of deep neural networks (DNNs), the risk of privacy breaches against DNN models is constantly on the rise, resulting in an increasing need for intellectual property (IP) protection for such models. Although neural network watermarking techniques are widely used to safeguard the IP of DNNs, they can only achieve passive protection and cannot actively prevent unauthorized users from illicit use or embezzlement of the trained DNN models. Therefore, the development of proactive protection techniques to prevent IP infringement is imperative. To this end, we propose SecureNet, a key-based access license framework for DNN models. The proposed approach involves injecting license keys into the model through backdoor learning, enabling correct model functionality only when the appropriate license key is included in the input. To ensure the reusability of DNN models, we also propose a license key replacement algorithm. In addition, based on SecureNet, we designed defense mechanisms against adversarial attacks and backdoor attacks, respectively. Furthermore, we introduce a fine-grained authorization method that enables flexible granting of model permissions to different users. We have designed four license-key schemes with different privileges, tailored to various scenarios. We evaluated SecureNet on five benchmark datasets including MNIST, Cifar10, Cifar100, FaceScrub, and CelebA, and assessed its performance on six classic DNN models: LeNet-5, VGG16, ResNet18, ResNet101, NFNet-F5, and MobileNetV3. The results demonstrate that our approach outperforms the state-of-the-art model parameter encryption methods by at least 95% in terms of computational efficiency. Additionally, it provides effective defense against adversarial attacks and backdoor attacks without compromising the model’s overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助再睡一夏采纳,获得10
1秒前
hd发布了新的文献求助10
2秒前
机灵君浩完成签到,获得积分10
2秒前
称心夏兰完成签到,获得积分20
4秒前
nnnnn完成签到 ,获得积分10
4秒前
酷波er应助ChenChen采纳,获得10
5秒前
善良梦竹发布了新的文献求助10
5秒前
英姑应助害羞向日葵采纳,获得10
5秒前
清新的寄翠完成签到,获得积分10
5秒前
LXG666完成签到,获得积分10
6秒前
7秒前
消消消消气完成签到 ,获得积分10
7秒前
Owen应助lxh913采纳,获得200
7秒前
我是老大应助本凡采纳,获得10
8秒前
哈哈哈哈完成签到 ,获得积分10
8秒前
warmsnow完成签到,获得积分10
8秒前
酷波er应助等等采纳,获得10
8秒前
粽子完成签到,获得积分10
8秒前
高脂悍婦完成签到,获得积分10
9秒前
9秒前
11秒前
再睡一夏发布了新的文献求助10
12秒前
13秒前
Valky完成签到,获得积分10
14秒前
西西完成签到,获得积分20
15秒前
15秒前
李健的小迷弟应助hd采纳,获得10
16秒前
16秒前
2889580752发布了新的文献求助10
17秒前
18秒前
再睡一夏完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
19秒前
19秒前
linxi发布了新的文献求助10
20秒前
21秒前
潇洒寄容完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091