清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SecureNet: Proactive intellectual property protection and model security defense for DNNs based on backdoor learning

后门 计算机科学 钥匙(锁) 许可证 计算机安全 知识产权 人工智能 机器学习 操作系统
作者
Peihao Li,Jie Huang,Huaqing Wu,Zeping Zhang,Chunyang Qi
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106199-106199
标识
DOI:10.1016/j.neunet.2024.106199
摘要

With the widespread application of deep neural networks (DNNs), the risk of privacy breaches against DNN models is constantly on the rise, resulting in an increasing need for intellectual property (IP) protection for such models. Although neural network watermarking techniques are widely used to safeguard the IP of DNNs, they can only achieve passive protection and cannot actively prevent unauthorized users from illicit use or embezzlement of the trained DNN models. Therefore, the development of proactive protection techniques to prevent IP infringement is imperative. To this end, we propose SecureNet, a key-based access license framework for DNN models. The proposed approach involves injecting license keys into the model through backdoor learning, enabling correct model functionality only when the appropriate license key is included in the input. To ensure the reusability of DNN models, we also propose a license key replacement algorithm. In addition, based on SecureNet, we designed defense mechanisms against adversarial attacks and backdoor attacks, respectively. Furthermore, we introduce a fine-grained authorization method that enables flexible granting of model permissions to different users. We have designed four license-key schemes with different privileges, tailored to various scenarios. We evaluated SecureNet on five benchmark datasets including MNIST, Cifar10, Cifar100, FaceScrub, and CelebA, and assessed its performance on six classic DNN models: LeNet-5, VGG16, ResNet18, ResNet101, NFNet-F5, and MobileNetV3. The results demonstrate that our approach outperforms the state-of-the-art model parameter encryption methods by at least 95% in terms of computational efficiency. Additionally, it provides effective defense against adversarial attacks and backdoor attacks without compromising the model’s overall performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YNYang完成签到,获得积分10
32秒前
Pattis完成签到 ,获得积分10
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
大模型应助田所浩二采纳,获得10
1分钟前
2分钟前
田所浩二发布了新的文献求助10
2分钟前
田所浩二完成签到,获得积分10
2分钟前
2分钟前
Yuna96发布了新的文献求助10
2分钟前
激动的似狮完成签到,获得积分10
3分钟前
暴躁的鱼完成签到 ,获得积分10
3分钟前
tt完成签到,获得积分10
3分钟前
cy0824完成签到 ,获得积分10
4分钟前
淡然的莫茗完成签到 ,获得积分10
4分钟前
忧郁的火车完成签到,获得积分10
6分钟前
不想看文献完成签到 ,获得积分10
6分钟前
zxx完成签到 ,获得积分0
7分钟前
7分钟前
7分钟前
Lliu发布了新的文献求助10
7分钟前
zpli完成签到 ,获得积分10
8分钟前
CipherSage应助科研通管家采纳,获得10
8分钟前
qqq完成签到,获得积分10
9分钟前
9分钟前
1234发布了新的文献求助10
9分钟前
1234完成签到,获得积分20
9分钟前
Lliu完成签到,获得积分10
9分钟前
五木完成签到,获得积分10
10分钟前
在水一方应助稳重的泽洋采纳,获得10
10分钟前
大模型应助科研通管家采纳,获得30
10分钟前
科目三应助Carl采纳,获得10
11分钟前
11分钟前
11分钟前
11分钟前
Carl发布了新的文献求助10
11分钟前
所所应助稳重的泽洋采纳,获得10
12分钟前
meeteryu完成签到,获得积分10
13分钟前
CHEN完成签到 ,获得积分0
13分钟前
13分钟前
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565086
求助须知:如何正确求助?哪些是违规求助? 4649803
关于积分的说明 14689300
捐赠科研通 4591729
什么是DOI,文献DOI怎么找? 2519358
邀请新用户注册赠送积分活动 1491917
关于科研通互助平台的介绍 1463056