亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SecureNet: Proactive intellectual property protection and model security defense for DNNs based on backdoor learning

后门 计算机科学 钥匙(锁) 许可证 计算机安全 知识产权 人工智能 机器学习 操作系统
作者
Peihao Li,Jie Huang,Huaqing Wu,Zeping Zhang,Chunyang Qi
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106199-106199
标识
DOI:10.1016/j.neunet.2024.106199
摘要

With the widespread application of deep neural networks (DNNs), the risk of privacy breaches against DNN models is constantly on the rise, resulting in an increasing need for intellectual property (IP) protection for such models. Although neural network watermarking techniques are widely used to safeguard the IP of DNNs, they can only achieve passive protection and cannot actively prevent unauthorized users from illicit use or embezzlement of the trained DNN models. Therefore, the development of proactive protection techniques to prevent IP infringement is imperative. To this end, we propose SecureNet, a key-based access license framework for DNN models. The proposed approach involves injecting license keys into the model through backdoor learning, enabling correct model functionality only when the appropriate license key is included in the input. To ensure the reusability of DNN models, we also propose a license key replacement algorithm. In addition, based on SecureNet, we designed defense mechanisms against adversarial attacks and backdoor attacks, respectively. Furthermore, we introduce a fine-grained authorization method that enables flexible granting of model permissions to different users. We have designed four license-key schemes with different privileges, tailored to various scenarios. We evaluated SecureNet on five benchmark datasets including MNIST, Cifar10, Cifar100, FaceScrub, and CelebA, and assessed its performance on six classic DNN models: LeNet-5, VGG16, ResNet18, ResNet101, NFNet-F5, and MobileNetV3. The results demonstrate that our approach outperforms the state-of-the-art model parameter encryption methods by at least 95% in terms of computational efficiency. Additionally, it provides effective defense against adversarial attacks and backdoor attacks without compromising the model’s overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
shinysparrow应助weirdo采纳,获得200
30秒前
雪山飞龙完成签到,获得积分10
36秒前
1分钟前
桐桐应助渊思采纳,获得10
1分钟前
weirdo发布了新的文献求助100
1分钟前
1分钟前
浮云完成签到 ,获得积分10
1分钟前
渊思发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
心随以动完成签到 ,获得积分10
2分钟前
修辛完成签到 ,获得积分10
3分钟前
wangermazi完成签到,获得积分10
3分钟前
思源应助科研通管家采纳,获得10
4分钟前
9527完成签到,获得积分10
4分钟前
王维完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
daiyu发布了新的文献求助30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
赘婿应助daiyu采纳,获得10
6分钟前
小龙完成签到,获得积分10
6分钟前
6分钟前
bing完成签到 ,获得积分10
7分钟前
小常发布了新的文献求助30
7分钟前
领导范儿应助蛋蛋采纳,获得10
7分钟前
8分钟前
长安完成签到,获得积分10
8分钟前
丘比特应助长安采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
艺霖大王完成签到,获得积分10
9分钟前
FashionBoy应助艺霖大王采纳,获得10
9分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045945
关于积分的说明 9003727
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691477