高光谱成像
偏最小二乘回归
多叶的
温室
叶绿素
深度学习
计算机科学
人工智能
数学
环境科学
园艺
生物
机器学习
作者
Ziran Ye,Xiangfeng Tan,Mengdi Dai,Xuting Chen,Yuanxiang Zhong,Yi Zhang,Yunjie Ruan,Dedong Kong
出处
期刊:Plant Methods
[BioMed Central]
日期:2024-02-03
卷期号:20 (1)
被引量:15
标识
DOI:10.1186/s13007-024-01148-9
摘要
Abstract Background The phenotypic traits of leaves are the direct reflection of the agronomic traits in the growth process of leafy vegetables, which plays a vital role in the selection of high-quality leafy vegetable varieties. The current image-based phenotypic traits extraction research mainly focuses on the morphological and structural traits of plants or leaves, and there are few studies on the phenotypes of physiological traits of leaves. The current research has developed a deep learning model aimed at predicting the total chlorophyll of greenhouse lettuce directly from the full spectrum of hyperspectral images. Results A CNN-based one-dimensional deep learning model with spectral attention module was utilized for the estimate of the total chlorophyll of greenhouse lettuce from the full spectrum of hyperspectral images. Experimental results demonstrate that the deep neural network with spectral attention module outperformed the existing standard approaches, including partial least squares regression (PLSR) and random forest (RF), with an average R 2 of 0.746 and an average RMSE of 2.018. Conclusions This study unveils the capability of leveraging deep attention networks and hyperspectral imaging for estimating lettuce chlorophyll levels. This approach offers a convenient, non-destructive, and effective estimation method for the automatic monitoring and production management of leafy vegetables.
科研通智能强力驱动
Strongly Powered by AbleSci AI