电解质
三氟甲磺酸
材料科学
无机化学
镁
过电位
法拉第效率
阴极
阳极
电化学
化学
有机化学
电极
物理化学
冶金
催化作用
作者
Stefan Ilić,Sydney N. Lavan,Noel J. Leon,Haoyu Liu,Akash Jain,Baris Key,Rajeev S. Assary,Chen Liao,Justin G. Connell
标识
DOI:10.1021/acsami.3c11293
摘要
Discovery of stable and efficient electrolytes that are compatible with magnesium metal anodes and high-voltage cathodes is crucial to enabling energy storage technologies that can move beyond existing Li-ion systems. Many promising electrolytes for magnesium anodes have been proposed with chloride-based systems at the forefront; however, Cl-containing electrolytes lack the oxidative stability required by high-voltage cathodes. In this work, we report magnesium trifluoromethanesulfonate (triflate) as a viable coanion for Cl-free, mixed-anion magnesium electrolytes. The addition of triflate to electrolytes containing bis(trifluoromethane sulfonyl) imide (TFSI–) anions yields significantly improved Coulombic efficiency, up to a 100 mV decrease in the plating/stripping overpotential, improved tolerance to trace H2O, and improved oxidative stability (0.35 V improvement compared to that of hybrid TFSI-Cl electrolytes). Based on 19F nuclear magnetic resonance and Raman spectroscopy measurements, we propose that these improvements in performance are driven by the formation of mixed-anion contact ion pairs, where both triflate and TFSI– are coordinated to Mg2+ in the electrolyte bulk. The formation of this mixed-anion magnesium complex is further predicted by the density functional theory to be thermodynamically driven. Collectively, this work outlines the guiding principles for the improved design of next-generation electrolytes for magnesium batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI