Machine learning based on magnetic resonance imaging and clinical parameters helps predict mesenchymal-epithelial transition factor expression in oral tongue squamous cell carcinoma: a pilot study

舌头 磁共振成像 上皮-间质转换 间充质干细胞 基底细胞 医学 病理 癌症研究 肿瘤科 放射科 内科学 癌症 转移
作者
Gongxin Yang,Zebin Xiao,Jiliang Ren,Ronghui Xia,Yingwei Wu,Ying Yuan,Xiaofeng Tao
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier]
卷期号:137 (4): 421-430 被引量:4
标识
DOI:10.1016/j.oooo.2023.12.789
摘要

Objectives : This study aimed to develop machine learning models to predict phosphorylated mesenchymal-epithelial transition factor (p-MET) expression in oral tongue squamous cell carcinoma (OTSCC) using magnetic resonance imaging (MRI)-derived texture features and clinical features. Methods : Thirty-four patients with OTSCC were retrospectively collected. Texture features were derived from preoperative MR images, including T2WI, apparent diffusion coefficient mapping, and contrast-enhanced (ce)-T1WI. Dimension reduction was performed consecutively with reproducibility analysis and an information gain algorithm. Five machine learning methods - AdaBoost, logistic regression (LR), naïve Bayes (NB), random forest (RF), and support vector machine (SVM) - were adopted to create models predicting p-MET expression. Their performance was assessed with fivefold cross-validation. Results : In total, 22 and 12 cases showed low and high p-MET expression, respectively. After dimension reduction, 3 texture features (ADC-Minimum, ce-T1WI-Imc2, and ce-T1WI-DependenceVariance) and 2 clinical features (depth of invasion (DOI) and T-stage) were selected with good reproducibility and best correlation with p-MET expression levels. The RF model yielded the best overall performance, correctly classifying p-MET expression status in 87.5% of OTSCCs with an area under the receiver operating characteristic curve of 0.875. Conclusion : Differences in p-MET expression in OTSCCs can be noninvasively reflected in MRI-based texture features and clinical parameters. Machine learning can potentially predict biomarker expression levels, such as MET, in patients with OTSCC. Statement of Clinical Relevance : A predictive model using machine learning based on MRI texture and clinical features demonstrates promise in predicting expression of p-MET in OTSCC. This could improve treatment decision-making, targeted therapy related to MET, and prognosis assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助开朗的宝川采纳,获得10
刚刚
li完成签到,获得积分10
刚刚
无花果应助lidan_2008采纳,获得10
1秒前
代桃完成签到,获得积分10
1秒前
1秒前
saefduo发布了新的文献求助10
1秒前
1秒前
ss发布了新的文献求助10
1秒前
科研通AI2S应助NING采纳,获得10
1秒前
2秒前
mia发布了新的文献求助10
2秒前
怡然缘分完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
XQ发布了新的文献求助10
2秒前
干净冰露完成签到,获得积分10
2秒前
zyx发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
无极微光应助xyu采纳,获得20
3秒前
今后应助时织梦采纳,获得10
3秒前
CodeCraft应助socialbot采纳,获得30
4秒前
4秒前
4秒前
4秒前
4秒前
芙芙吃饱饱发布了新的文献求助200
4秒前
xzs关闭了xzs文献求助
4秒前
华仔应助山真页采纳,获得10
5秒前
terminus完成签到,获得积分10
5秒前
6秒前
小远发布了新的文献求助10
6秒前
flysky120发布了新的文献求助10
6秒前
碧蓝青梦发布了新的文献求助10
6秒前
6秒前
脑洞疼应助危机的硬币采纳,获得10
6秒前
6秒前
22完成签到,获得积分10
7秒前
星川发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759349
求助须知:如何正确求助?哪些是违规求助? 5519823
关于积分的说明 15393808
捐赠科研通 4896421
什么是DOI,文献DOI怎么找? 2633690
邀请新用户注册赠送积分活动 1581712
关于科研通互助平台的介绍 1537250