Machine learning based on magnetic resonance imaging and clinical parameters helps predict mesenchymal-epithelial transition factor expression in oral tongue squamous cell carcinoma: a pilot study

舌头 磁共振成像 上皮-间质转换 间充质干细胞 基底细胞 医学 病理 癌症研究 肿瘤科 放射科 内科学 癌症 转移
作者
Gongxin Yang,Zebin Xiao,Jiliang Ren,Ronghui Xia,Yingwei Wu,Ying Yuan,Xiaofeng Tao
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier]
卷期号:137 (4): 421-430 被引量:4
标识
DOI:10.1016/j.oooo.2023.12.789
摘要

Objectives : This study aimed to develop machine learning models to predict phosphorylated mesenchymal-epithelial transition factor (p-MET) expression in oral tongue squamous cell carcinoma (OTSCC) using magnetic resonance imaging (MRI)-derived texture features and clinical features. Methods : Thirty-four patients with OTSCC were retrospectively collected. Texture features were derived from preoperative MR images, including T2WI, apparent diffusion coefficient mapping, and contrast-enhanced (ce)-T1WI. Dimension reduction was performed consecutively with reproducibility analysis and an information gain algorithm. Five machine learning methods - AdaBoost, logistic regression (LR), naïve Bayes (NB), random forest (RF), and support vector machine (SVM) - were adopted to create models predicting p-MET expression. Their performance was assessed with fivefold cross-validation. Results : In total, 22 and 12 cases showed low and high p-MET expression, respectively. After dimension reduction, 3 texture features (ADC-Minimum, ce-T1WI-Imc2, and ce-T1WI-DependenceVariance) and 2 clinical features (depth of invasion (DOI) and T-stage) were selected with good reproducibility and best correlation with p-MET expression levels. The RF model yielded the best overall performance, correctly classifying p-MET expression status in 87.5% of OTSCCs with an area under the receiver operating characteristic curve of 0.875. Conclusion : Differences in p-MET expression in OTSCCs can be noninvasively reflected in MRI-based texture features and clinical parameters. Machine learning can potentially predict biomarker expression levels, such as MET, in patients with OTSCC. Statement of Clinical Relevance : A predictive model using machine learning based on MRI texture and clinical features demonstrates promise in predicting expression of p-MET in OTSCC. This could improve treatment decision-making, targeted therapy related to MET, and prognosis assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三脸茫然完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
5秒前
小辣椒完成签到 ,获得积分10
10秒前
dd完成签到,获得积分10
13秒前
yong完成签到 ,获得积分10
14秒前
啦你完成签到 ,获得积分10
17秒前
西柚柠檬完成签到 ,获得积分10
19秒前
拓小八完成签到,获得积分0
20秒前
shmily13333完成签到 ,获得积分10
27秒前
大猫爪草完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
30秒前
nicheng完成签到 ,获得积分0
31秒前
番茄豆丁完成签到 ,获得积分10
32秒前
害怕的小刺猬完成签到 ,获得积分10
33秒前
guoxihan完成签到,获得积分10
36秒前
麦田麦兜完成签到,获得积分10
36秒前
TT完成签到 ,获得积分10
36秒前
回首不再是少年完成签到,获得积分0
37秒前
木卫二完成签到 ,获得积分10
41秒前
粗犷的灵松完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
44秒前
1_1完成签到,获得积分10
49秒前
yl完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
56秒前
鱼鱼鱼鱼完成签到 ,获得积分10
59秒前
赵赵完成签到 ,获得积分10
1分钟前
刻苦的新烟完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xu完成签到 ,获得积分10
1分钟前
追梦完成签到,获得积分10
1分钟前
1分钟前
文献搬运工完成签到 ,获得积分0
1分钟前
胜胜糖完成签到 ,获得积分0
1分钟前
一颗红葡萄完成签到 ,获得积分10
1分钟前
伶俐海安完成签到 ,获得积分10
1分钟前
开心果完成签到 ,获得积分10
1分钟前
玉鱼儿完成签到 ,获得积分10
1分钟前
橘子完成签到 ,获得积分10
1分钟前
kyhappy_2002完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584819
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615409
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575