Machine learning based on magnetic resonance imaging and clinical parameters helps predict mesenchymal-epithelial transition factor expression in oral tongue squamous cell carcinoma: a pilot study

舌头 磁共振成像 上皮-间质转换 间充质干细胞 基底细胞 医学 病理 癌症研究 肿瘤科 放射科 内科学 癌症 转移
作者
Gongxin Yang,Zhang Xiao,Jie Ren,Ronghui Xia,Yingwei Wu,Ying Yuan,Xiaofeng Tao
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier]
卷期号:137 (4): 421-430
标识
DOI:10.1016/j.oooo.2023.12.789
摘要

Objectives : This study aimed to develop machine learning models to predict phosphorylated mesenchymal-epithelial transition factor (p-MET) expression in oral tongue squamous cell carcinoma (OTSCC) using magnetic resonance imaging (MRI)-derived texture features and clinical features. Methods : Thirty-four patients with OTSCC were retrospectively collected. Texture features were derived from preoperative MR images, including T2WI, apparent diffusion coefficient mapping, and contrast-enhanced (ce)-T1WI. Dimension reduction was performed consecutively with reproducibility analysis and an information gain algorithm. Five machine learning methods - AdaBoost, logistic regression (LR), naïve Bayes (NB), random forest (RF), and support vector machine (SVM) - were adopted to create models predicting p-MET expression. Their performance was assessed with fivefold cross-validation. Results : In total, 22 and 12 cases showed low and high p-MET expression, respectively. After dimension reduction, 3 texture features (ADC-Minimum, ce-T1WI-Imc2, and ce-T1WI-DependenceVariance) and 2 clinical features (depth of invasion (DOI) and T-stage) were selected with good reproducibility and best correlation with p-MET expression levels. The RF model yielded the best overall performance, correctly classifying p-MET expression status in 87.5% of OTSCCs with an area under the receiver operating characteristic curve of 0.875. Conclusion : Differences in p-MET expression in OTSCCs can be noninvasively reflected in MRI-based texture features and clinical parameters. Machine learning can potentially predict biomarker expression levels, such as MET, in patients with OTSCC. Statement of Clinical Relevance : A predictive model using machine learning based on MRI texture and clinical features demonstrates promise in predicting expression of p-MET in OTSCC. This could improve treatment decision-making, targeted therapy related to MET, and prognosis assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
jy完成签到,获得积分10
2秒前
炒米粉完成签到,获得积分10
6秒前
摸鱼发布了新的文献求助10
6秒前
jinmuna发布了新的文献求助10
8秒前
9秒前
TO完成签到,获得积分10
10秒前
ZXW完成签到 ,获得积分10
11秒前
15秒前
OCTOPUS发布了新的文献求助10
16秒前
星辰大海应助高山我梦采纳,获得10
17秒前
17秒前
祢裰儿发布了新的文献求助10
20秒前
w_sea应助zzy采纳,获得10
23秒前
23秒前
angle完成签到 ,获得积分10
23秒前
25秒前
赘婿应助Jacqueline777采纳,获得10
26秒前
26秒前
溪秋白发布了新的文献求助10
27秒前
27秒前
28秒前
无情的沛岚完成签到 ,获得积分20
30秒前
高山我梦发布了新的文献求助10
31秒前
小肥肥发布了新的文献求助10
32秒前
33秒前
Echo完成签到,获得积分0
34秒前
123完成签到,获得积分20
35秒前
36秒前
cc2001完成签到,获得积分10
37秒前
37秒前
38秒前
39秒前
Phoenix ZHANG发布了新的文献求助10
39秒前
Ali发布了新的文献求助10
42秒前
坚强焦完成签到,获得积分10
43秒前
Akim应助柒柒采纳,获得10
45秒前
无花果应助pattrick采纳,获得30
45秒前
jin1233完成签到,获得积分10
46秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329559
求助须知:如何正确求助?哪些是违规求助? 2959152
关于积分的说明 8594441
捐赠科研通 2637675
什么是DOI,文献DOI怎么找? 1443672
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656231