Machine learning based on magnetic resonance imaging and clinical parameters helps predict mesenchymal-epithelial transition factor expression in oral tongue squamous cell carcinoma: a pilot study

舌头 磁共振成像 上皮-间质转换 间充质干细胞 基底细胞 医学 病理 癌症研究 肿瘤科 放射科 内科学 癌症 转移
作者
Gongxin Yang,Zebin Xiao,Jiliang Ren,Ronghui Xia,Yingwei Wu,Ying Yuan,Xiaofeng Tao
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier]
卷期号:137 (4): 421-430 被引量:4
标识
DOI:10.1016/j.oooo.2023.12.789
摘要

Objectives : This study aimed to develop machine learning models to predict phosphorylated mesenchymal-epithelial transition factor (p-MET) expression in oral tongue squamous cell carcinoma (OTSCC) using magnetic resonance imaging (MRI)-derived texture features and clinical features. Methods : Thirty-four patients with OTSCC were retrospectively collected. Texture features were derived from preoperative MR images, including T2WI, apparent diffusion coefficient mapping, and contrast-enhanced (ce)-T1WI. Dimension reduction was performed consecutively with reproducibility analysis and an information gain algorithm. Five machine learning methods - AdaBoost, logistic regression (LR), naïve Bayes (NB), random forest (RF), and support vector machine (SVM) - were adopted to create models predicting p-MET expression. Their performance was assessed with fivefold cross-validation. Results : In total, 22 and 12 cases showed low and high p-MET expression, respectively. After dimension reduction, 3 texture features (ADC-Minimum, ce-T1WI-Imc2, and ce-T1WI-DependenceVariance) and 2 clinical features (depth of invasion (DOI) and T-stage) were selected with good reproducibility and best correlation with p-MET expression levels. The RF model yielded the best overall performance, correctly classifying p-MET expression status in 87.5% of OTSCCs with an area under the receiver operating characteristic curve of 0.875. Conclusion : Differences in p-MET expression in OTSCCs can be noninvasively reflected in MRI-based texture features and clinical parameters. Machine learning can potentially predict biomarker expression levels, such as MET, in patients with OTSCC. Statement of Clinical Relevance : A predictive model using machine learning based on MRI texture and clinical features demonstrates promise in predicting expression of p-MET in OTSCC. This could improve treatment decision-making, targeted therapy related to MET, and prognosis assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三岁完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
dhf完成签到,获得积分10
1秒前
xiamovivi完成签到,获得积分10
1秒前
赘婿应助南亭采纳,获得10
1秒前
1秒前
文献求助完成签到,获得积分10
1秒前
1秒前
Future完成签到 ,获得积分10
1秒前
甜甜雪兰完成签到 ,获得积分10
1秒前
有何不可完成签到,获得积分20
2秒前
2秒前
汉堡包应助gmj采纳,获得10
2秒前
CiCi完成签到 ,获得积分10
2秒前
托尔斯泰完成签到,获得积分10
2秒前
3秒前
你香完成签到,获得积分10
3秒前
Jason完成签到 ,获得积分10
3秒前
NMR完成签到,获得积分10
3秒前
楠楠多多发布了新的文献求助10
3秒前
112450195发布了新的文献求助10
4秒前
4秒前
4秒前
nj2025完成签到,获得积分20
4秒前
5秒前
moon发布了新的文献求助10
5秒前
ffffabab完成签到,获得积分10
5秒前
心灵美凝竹完成签到 ,获得积分10
5秒前
6秒前
6秒前
ohh发布了新的文献求助10
6秒前
霍仁维思发布了新的文献求助10
6秒前
彭于晏应助RY文献下载采纳,获得10
6秒前
zjh11143发布了新的文献求助10
6秒前
7秒前
舒服的牛排完成签到 ,获得积分10
7秒前
caya发布了新的文献求助10
7秒前
gnr2000发布了新的文献求助10
7秒前
搜集达人应助小玲哥采纳,获得10
8秒前
NexusExplorer应助HAMS采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767