Machine learning based on magnetic resonance imaging and clinical parameters helps predict mesenchymal-epithelial transition factor expression in oral tongue squamous cell carcinoma: a pilot study

舌头 磁共振成像 上皮-间质转换 间充质干细胞 基底细胞 医学 病理 癌症研究 肿瘤科 放射科 内科学 癌症 转移
作者
Gongxin Yang,Zebin Xiao,Jiliang Ren,Ronghui Xia,Yingwei Wu,Ying Yuan,Xiaofeng Tao
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier BV]
卷期号:137 (4): 421-430 被引量:4
标识
DOI:10.1016/j.oooo.2023.12.789
摘要

Objectives : This study aimed to develop machine learning models to predict phosphorylated mesenchymal-epithelial transition factor (p-MET) expression in oral tongue squamous cell carcinoma (OTSCC) using magnetic resonance imaging (MRI)-derived texture features and clinical features. Methods : Thirty-four patients with OTSCC were retrospectively collected. Texture features were derived from preoperative MR images, including T2WI, apparent diffusion coefficient mapping, and contrast-enhanced (ce)-T1WI. Dimension reduction was performed consecutively with reproducibility analysis and an information gain algorithm. Five machine learning methods - AdaBoost, logistic regression (LR), naïve Bayes (NB), random forest (RF), and support vector machine (SVM) - were adopted to create models predicting p-MET expression. Their performance was assessed with fivefold cross-validation. Results : In total, 22 and 12 cases showed low and high p-MET expression, respectively. After dimension reduction, 3 texture features (ADC-Minimum, ce-T1WI-Imc2, and ce-T1WI-DependenceVariance) and 2 clinical features (depth of invasion (DOI) and T-stage) were selected with good reproducibility and best correlation with p-MET expression levels. The RF model yielded the best overall performance, correctly classifying p-MET expression status in 87.5% of OTSCCs with an area under the receiver operating characteristic curve of 0.875. Conclusion : Differences in p-MET expression in OTSCCs can be noninvasively reflected in MRI-based texture features and clinical parameters. Machine learning can potentially predict biomarker expression levels, such as MET, in patients with OTSCC. Statement of Clinical Relevance : A predictive model using machine learning based on MRI texture and clinical features demonstrates promise in predicting expression of p-MET in OTSCC. This could improve treatment decision-making, targeted therapy related to MET, and prognosis assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助荒野风采纳,获得10
刚刚
闫木木完成签到,获得积分10
1秒前
邪恶青年完成签到,获得积分10
1秒前
xuan完成签到,获得积分10
1秒前
yahonyoyoyo发布了新的文献求助10
2秒前
135完成签到 ,获得积分10
4秒前
sl发布了新的文献求助10
4秒前
aldehyde应助yahonyoyoyo采纳,获得10
5秒前
坚强莺完成签到,获得积分10
5秒前
5秒前
yxrose完成签到,获得积分10
5秒前
巫马逊完成签到,获得积分10
5秒前
hb完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助livra1058采纳,获得10
6秒前
6秒前
松柏完成签到 ,获得积分10
7秒前
7秒前
7秒前
激昂的南烟完成签到 ,获得积分10
7秒前
科研小白完成签到,获得积分10
7秒前
早点睡吧完成签到,获得积分10
8秒前
xinxinbaby完成签到,获得积分10
9秒前
完美世界应助谨慎的擎宇采纳,获得10
9秒前
乌拉拉发布了新的文献求助10
9秒前
大个应助欣欣采纳,获得10
9秒前
斯文败类应助机灵又蓝采纳,获得30
9秒前
各个器官完成签到 ,获得积分10
10秒前
cgh发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
vain发布了新的文献求助10
11秒前
MiriamYu完成签到,获得积分10
11秒前
波风水门pxf完成签到,获得积分10
11秒前
Hello应助海白采纳,获得10
12秒前
dgq_81完成签到,获得积分10
13秒前
marco完成签到,获得积分10
13秒前
14秒前
15秒前
Tal完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029