已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based on magnetic resonance imaging and clinical parameters helps predict mesenchymal-epithelial transition factor expression in oral tongue squamous cell carcinoma: a pilot study

舌头 磁共振成像 上皮-间质转换 间充质干细胞 基底细胞 医学 病理 癌症研究 肿瘤科 放射科 内科学 癌症 转移
作者
Gongxin Yang,Zebin Xiao,Jiliang Ren,Ronghui Xia,Yingwei Wu,Ying Yuan,Xiaofeng Tao
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier BV]
卷期号:137 (4): 421-430 被引量:4
标识
DOI:10.1016/j.oooo.2023.12.789
摘要

Objectives : This study aimed to develop machine learning models to predict phosphorylated mesenchymal-epithelial transition factor (p-MET) expression in oral tongue squamous cell carcinoma (OTSCC) using magnetic resonance imaging (MRI)-derived texture features and clinical features. Methods : Thirty-four patients with OTSCC were retrospectively collected. Texture features were derived from preoperative MR images, including T2WI, apparent diffusion coefficient mapping, and contrast-enhanced (ce)-T1WI. Dimension reduction was performed consecutively with reproducibility analysis and an information gain algorithm. Five machine learning methods - AdaBoost, logistic regression (LR), naïve Bayes (NB), random forest (RF), and support vector machine (SVM) - were adopted to create models predicting p-MET expression. Their performance was assessed with fivefold cross-validation. Results : In total, 22 and 12 cases showed low and high p-MET expression, respectively. After dimension reduction, 3 texture features (ADC-Minimum, ce-T1WI-Imc2, and ce-T1WI-DependenceVariance) and 2 clinical features (depth of invasion (DOI) and T-stage) were selected with good reproducibility and best correlation with p-MET expression levels. The RF model yielded the best overall performance, correctly classifying p-MET expression status in 87.5% of OTSCCs with an area under the receiver operating characteristic curve of 0.875. Conclusion : Differences in p-MET expression in OTSCCs can be noninvasively reflected in MRI-based texture features and clinical parameters. Machine learning can potentially predict biomarker expression levels, such as MET, in patients with OTSCC. Statement of Clinical Relevance : A predictive model using machine learning based on MRI texture and clinical features demonstrates promise in predicting expression of p-MET in OTSCC. This could improve treatment decision-making, targeted therapy related to MET, and prognosis assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一直向前发布了新的文献求助10
1秒前
朴实的热狗完成签到,获得积分10
3秒前
甜蜜水蜜桃完成签到 ,获得积分10
4秒前
杨枝甘露加雪糕完成签到,获得积分10
4秒前
LiChard完成签到 ,获得积分10
5秒前
在水一方完成签到 ,获得积分10
6秒前
6秒前
乐乐应助VIAI采纳,获得10
6秒前
他克莫司完成签到,获得积分10
9秒前
9秒前
恐龙完成签到 ,获得积分10
10秒前
大笨鹅之家完成签到 ,获得积分10
14秒前
他克莫司发布了新的文献求助10
14秒前
15秒前
tcmlida完成签到,获得积分10
15秒前
16秒前
momo应助lizigongzhu采纳,获得10
17秒前
聂青枫完成签到,获得积分10
18秒前
max发布了新的文献求助10
20秒前
21秒前
22秒前
轻松的惜芹完成签到,获得积分10
22秒前
水若琳发布了新的文献求助10
26秒前
微笑冰棍完成签到 ,获得积分10
27秒前
签到完成签到,获得积分10
28秒前
28秒前
ZLM完成签到,获得积分10
29秒前
chenjzhuc完成签到,获得积分10
30秒前
5Hepburn发布了新的文献求助10
33秒前
马华化完成签到,获得积分0
34秒前
梅者如西发布了新的文献求助10
35秒前
朝气完成签到,获得积分10
35秒前
Ava应助max采纳,获得10
35秒前
36秒前
37秒前
38秒前
高高的天亦完成签到 ,获得积分10
40秒前
40秒前
42秒前
文明8完成签到,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989957
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256000
捐赠科研通 3270880
什么是DOI,文献DOI怎么找? 1805070
邀请新用户注册赠送积分活动 882252
科研通“疑难数据库(出版商)”最低求助积分说明 809216