A few-shot link prediction framework to drug repurposing using multi-level attention network

计算机科学 药物重新定位 重新调整用途 机器学习 人工智能 图形 任务(项目管理) 数据挖掘 集合(抽象数据类型) 药品 理论计算机科学 心理学 生态学 管理 精神科 经济 生物 程序设计语言
作者
Chenglin Yang,Xianlai Chen,Jincai Huang,Ying An,Zhenyu Huang,Yu Sun
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107936-107936 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.107936
摘要

Drug repurposing is a strategy aiming at uncovering novel medical indications of approved drugs. This process of discovery can be effectively represented as a link prediction task within a medical knowledge graph by predicting the missing relation between the disease entity and the drug entity. Typically, the links to be predicted pertain to rare types, thereby necessitating the task of few-shot link prediction. However, the sparsity of neighborhood information and weak triplet interactions result in less effective representations, which brings great challenges to the few-shot link prediction. Therefore, in this paper, we proposed a meta-learning framework based on a multi-level attention network (MLAN) to capture valuable information in the few-shot scenario for drug repurposing. First, the proposed method utilized a gating mechanism and a graph attention network to effectively filter noise information and highlight the valuable neighborhood information, respectively. Second, the proposed commonality relation learner, employing a set transformer, effectively captured triplet-level interactions while remaining insensitive to the size of the support set. Finally, a model-agnostic meta-learning training strategy was employed to optimize the model quickly on each meta task. We conducted validation of the proposed method on two datasets specifically designed for few-shot link prediction in medical field: COVID19-One and BIOKG-One. Experimental results showed that the proposed model had significant advantages over state-of-the-art few-shot link prediction methods. Results also highlighted the valuable insights of the proposed method, which successfully integrated the components within a unified meta-learning framework for drug repurposing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逆旅如行人完成签到,获得积分10
1秒前
不想上班发布了新的文献求助10
1秒前
安详忆梅发布了新的文献求助10
2秒前
6秒前
lt0217发布了新的文献求助10
7秒前
学学术术小小白白完成签到,获得积分10
8秒前
笑对人生发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
12秒前
你香发布了新的文献求助10
14秒前
lins发布了新的文献求助10
14秒前
萧水白应助高大的白莲采纳,获得50
15秒前
梁凉凉发布了新的文献求助10
15秒前
16秒前
烟花应助比巴卜采纳,获得10
16秒前
Skyyeats发布了新的文献求助10
17秒前
深情安青应助医学牲采纳,获得10
17秒前
啊呀完成签到,获得积分10
17秒前
lt0217完成签到,获得积分10
18秒前
鲁西西发布了新的文献求助10
20秒前
51hz完成签到,获得积分10
20秒前
lins完成签到,获得积分20
21秒前
22秒前
23秒前
CodeCraft应助淡定的依瑶采纳,获得10
25秒前
26秒前
26秒前
比巴卜发布了新的文献求助10
27秒前
端庄向雁完成签到,获得积分10
27秒前
51hz发布了新的文献求助10
27秒前
27秒前
日日上上签完成签到,获得积分20
30秒前
小马甲应助比巴卜采纳,获得10
30秒前
745789发布了新的文献求助30
31秒前
Jasper应助皮皮采纳,获得10
32秒前
White.K发布了新的文献求助10
32秒前
MORNING发布了新的文献求助10
32秒前
36秒前
木头人应助wang先生采纳,获得10
39秒前
40秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303