A few-shot link prediction framework to drug repurposing using multi-level attention network

计算机科学 药物重新定位 重新调整用途 机器学习 人工智能 图形 任务(项目管理) 数据挖掘 集合(抽象数据类型) 药品 理论计算机科学 精神科 生物 经济 管理 程序设计语言 生态学 心理学
作者
Chenglin Yang,Xianlai Chen,Jincai Huang,Ying An,Zhenyu Huang,Yu Sun
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 107936-107936 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.107936
摘要

Drug repurposing is a strategy aiming at uncovering novel medical indications of approved drugs. This process of discovery can be effectively represented as a link prediction task within a medical knowledge graph by predicting the missing relation between the disease entity and the drug entity. Typically, the links to be predicted pertain to rare types, thereby necessitating the task of few-shot link prediction. However, the sparsity of neighborhood information and weak triplet interactions result in less effective representations, which brings great challenges to the few-shot link prediction. Therefore, in this paper, we proposed a meta-learning framework based on a multi-level attention network (MLAN) to capture valuable information in the few-shot scenario for drug repurposing. First, the proposed method utilized a gating mechanism and a graph attention network to effectively filter noise information and highlight the valuable neighborhood information, respectively. Second, the proposed commonality relation learner, employing a set transformer, effectively captured triplet-level interactions while remaining insensitive to the size of the support set. Finally, a model-agnostic meta-learning training strategy was employed to optimize the model quickly on each meta task. We conducted validation of the proposed method on two datasets specifically designed for few-shot link prediction in medical field: COVID19-One and BIOKG-One. Experimental results showed that the proposed model had significant advantages over state-of-the-art few-shot link prediction methods. Results also highlighted the valuable insights of the proposed method, which successfully integrated the components within a unified meta-learning framework for drug repurposing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助小懒虫采纳,获得10
刚刚
科研通AI5应助acheeee采纳,获得10
刚刚
1秒前
杨文磊发布了新的文献求助10
1秒前
沉静从凝完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
panfan完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
阿静完成签到,获得积分10
4秒前
三月发布了新的文献求助10
4秒前
罗拉完成签到,获得积分20
5秒前
寂漉发布了新的文献求助10
6秒前
十一发布了新的文献求助10
6秒前
yj发布了新的文献求助10
6秒前
7秒前
Ava应助霸气的思柔采纳,获得10
7秒前
科研通AI5应助搞不好你们采纳,获得10
7秒前
papa发布了新的文献求助20
8秒前
zhu发布了新的文献求助10
8秒前
子车茗应助whandzxl采纳,获得30
8秒前
小呆陶陶完成签到 ,获得积分10
8秒前
靓丽雅彤发布了新的文献求助10
8秒前
8秒前
Qi发布了新的文献求助10
8秒前
桐桐应助罗拉采纳,获得10
8秒前
9秒前
9秒前
憨憨完成签到,获得积分10
10秒前
10秒前
刘汐完成签到,获得积分10
10秒前
10秒前
东郭先生发布了新的文献求助10
11秒前
淼淼完成签到,获得积分10
12秒前
粗犷的书萱完成签到,获得积分10
12秒前
13秒前
小马甲应助欢呼茗茗采纳,获得10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483356
求助须知:如何正确求助?哪些是违规求助? 3072736
关于积分的说明 9127609
捐赠科研通 2764309
什么是DOI,文献DOI怎么找? 1517091
邀请新用户注册赠送积分活动 701898
科研通“疑难数据库(出版商)”最低求助积分说明 700770