材料科学
硅
纳米技术
工程物理
光电子学
工程类
作者
Leiming Fang,Xinrui Cao,Zexing Cao
标识
DOI:10.1021/acs.jpclett.3c02989
摘要
On the basis of the especially tunable electronic property of Si, several kinds of nanomaterials with atomically dispersed Si were constructed and characterized by extensive first-principles calculations and ab initio molecular dynamics (AIMD) simulations. The new-type Si(X≡Y)n wide-bandgap semiconductors featuring through-space d-π* hyperconjugation exhibit unique properties in photoelectric conversion, photoconductivity, structural mechanics, etc. The SiC8 siligraphene with the planar tetracoordinate Si (ptSi) has a high lithium-storage capacity and comparably facile surface migration behaviors of both Li and Li+, making it a promising anode material for high-performance Li-ion batteries. The atomically dispersed Si sites of 2D monolayer materials, such as ptSi and three- and four-coordinated Si atoms, generally exhibit remarkable catalytic activity toward CO2 activation with different electron mechanisms, resulting in different scaling relations between the activity and the p-band center. The computational findings enrich the understanding of structural and chemical properties of silicon and open up avenues for developing Si-based functional materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI