亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthetic Data Improve Survival Status Prediction Models in Early-Onset Colorectal Cancer

合成数据 数据集 公制(单位) 统计 计算机科学 人口 人工智能 随机森林 数学 医学 运营管理 环境卫生 经济
作者
Hyunwook Kim,Won Seok Jang,Woo Seob Sim,Han Sang Kim,Jeong Eun Choi,Eun Sil Baek,Yu Rang Park,Sang Joon Shin
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8)
标识
DOI:10.1200/cci.23.00201
摘要

PURPOSE In artificial intelligence–based modeling, working with a limited number of patient groups is challenging. This retrospective study aimed to evaluate whether applying synthetic data generation methods to the clinical data of small patient groups can enhance the performance of prediction models. MATERIALS AND METHODS A data set collected by the Cancer Registry Library Project from the Yonsei Cancer Center (YCC), Severance Hospital, between January 2008 and October 2020 was reviewed. Patients with colorectal cancer younger than 50 years who started their initial treatment at YCC were included. A Bayesian network–based synthesizing model was used to generate a synthetic data set, combined with the differential privacy (DP) method. RESULTS A synthetic population of 5,005 was generated from a data set of 1,253 patients with 93 clinical features. The Hellinger distance and correlation difference metric were below 0.3 and 0.5, respectively, indicating no statistical difference. The overall survival by disease stage did not differ between the synthetic and original populations. Training with the synthetic data and validating with the original data showed the highest performances of 0.850, 0.836, and 0.790 for the Decision Tree, Random Forest, and XGBoost models, respectively. Comparison of synthetic data sets with different epsilon parameters from the original data sets showed improved performance >0.1%. For extremely small data sets, models using synthetic data outperformed those using only original data sets. The reidentification risk measures demonstrated that the epsilons between 0.1 and 100 fell below the baseline, indicating a preserved privacy state. CONCLUSION The synthetic data generation approach enhances predictive modeling performance by maintaining statistical and clinical integrity, and simultaneously reduces privacy risks through the application of DP techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
44秒前
嘟嘟完成签到 ,获得积分10
45秒前
自知则知之完成签到 ,获得积分10
50秒前
1分钟前
Orange应助nsc采纳,获得10
1分钟前
科目三应助nsc采纳,获得10
1分钟前
大个应助nsc采纳,获得10
1分钟前
完美世界应助nsc采纳,获得30
1分钟前
FashionBoy应助nsc采纳,获得10
1分钟前
丘比特应助nsc采纳,获得10
1分钟前
Orange应助nsc采纳,获得10
1分钟前
慕青应助nsc采纳,获得10
1分钟前
打打应助nsc采纳,获得10
1分钟前
研友_VZG7GZ应助nsc采纳,获得10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
judy007发布了新的文献求助10
1分钟前
科研通AI2S应助无辜笑容采纳,获得10
1分钟前
cc应助科研通管家采纳,获得30
2分钟前
2分钟前
斯文败类应助nsc采纳,获得10
2分钟前
Ava应助nsc采纳,获得10
2分钟前
小二郎应助nsc采纳,获得10
2分钟前
天天快乐应助nsc采纳,获得10
2分钟前
李健应助nsc采纳,获得10
2分钟前
汉堡包应助nsc采纳,获得10
2分钟前
李健的小迷弟应助nsc采纳,获得10
2分钟前
在水一方应助nsc采纳,获得10
2分钟前
英姑应助nsc采纳,获得10
2分钟前
FashionBoy应助nsc采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264