Synthetic Data Improve Survival Status Prediction Models in Early-Onset Colorectal Cancer

合成数据 数据集 公制(单位) 统计 计算机科学 人口 人工智能 随机森林 数学 医学 运营管理 环境卫生 经济
作者
Hyunwook Kim,Won Seok Jang,Woo Seob Sim,Han Sang Kim,Jeong Eun Choi,Eun Sil Baek,Yu Rang Park,Sang Joon Shin
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8)
标识
DOI:10.1200/cci.23.00201
摘要

PURPOSE In artificial intelligence–based modeling, working with a limited number of patient groups is challenging. This retrospective study aimed to evaluate whether applying synthetic data generation methods to the clinical data of small patient groups can enhance the performance of prediction models. MATERIALS AND METHODS A data set collected by the Cancer Registry Library Project from the Yonsei Cancer Center (YCC), Severance Hospital, between January 2008 and October 2020 was reviewed. Patients with colorectal cancer younger than 50 years who started their initial treatment at YCC were included. A Bayesian network–based synthesizing model was used to generate a synthetic data set, combined with the differential privacy (DP) method. RESULTS A synthetic population of 5,005 was generated from a data set of 1,253 patients with 93 clinical features. The Hellinger distance and correlation difference metric were below 0.3 and 0.5, respectively, indicating no statistical difference. The overall survival by disease stage did not differ between the synthetic and original populations. Training with the synthetic data and validating with the original data showed the highest performances of 0.850, 0.836, and 0.790 for the Decision Tree, Random Forest, and XGBoost models, respectively. Comparison of synthetic data sets with different epsilon parameters from the original data sets showed improved performance >0.1%. For extremely small data sets, models using synthetic data outperformed those using only original data sets. The reidentification risk measures demonstrated that the epsilons between 0.1 and 100 fell below the baseline, indicating a preserved privacy state. CONCLUSION The synthetic data generation approach enhances predictive modeling performance by maintaining statistical and clinical integrity, and simultaneously reduces privacy risks through the application of DP techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助安详小丸子采纳,获得10
1秒前
十一号发布了新的文献求助10
1秒前
1秒前
shin完成签到,获得积分10
1秒前
霜之哀伤完成签到,获得积分10
1秒前
hersy发布了新的文献求助10
1秒前
李家龙发布了新的文献求助10
1秒前
hongdongxiang发布了新的文献求助10
2秒前
署前街少年完成签到,获得积分10
2秒前
2秒前
tuzi2160完成签到,获得积分10
2秒前
2秒前
Akim应助miaomiao采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
李旭东发布了新的文献求助20
3秒前
刘小白完成签到,获得积分10
4秒前
4秒前
5秒前
乐乐应助噜噜晓采纳,获得10
5秒前
静心404发布了新的文献求助10
6秒前
付大威发布了新的文献求助20
6秒前
Orange应助tuzi2160采纳,获得10
6秒前
6秒前
我是老大应助安静的难破采纳,获得10
6秒前
zimo发布了新的文献求助10
6秒前
7秒前
鲸鱼发布了新的文献求助10
7秒前
传奇3应助tosania采纳,获得10
7秒前
7秒前
7秒前
7秒前
我迷了鹿发布了新的文献求助10
7秒前
ff完成签到,获得积分10
8秒前
活泼又晴完成签到,获得积分10
8秒前
8秒前
张诗雯完成签到 ,获得积分10
9秒前
10秒前
DMMM完成签到,获得积分10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646