Advanced decision support system for individuals with diabetes on multiple daily injections therapy using reinforcement learning and nearest-neighbors: In-silico and clinical results

糖尿病 算法 计算机科学 强化学习 医学 胰岛素 机器学习 人工智能 内科学 内分泌学
作者
Adnan Jafar,Melissa‐Rosina Pasqua,B. J. Olson,Ahmad Haidar
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:148: 102749-102749 被引量:5
标识
DOI:10.1016/j.artmed.2023.102749
摘要

Many individuals with diabetes on multiple daily insulin injections therapy use carbohydrate ratios (CRs) and correction factors (CFs) to determine mealtime and correction insulin boluses. The CRs and CFs vary over time due to physiological changes in individuals' response to insulin. Errors in insulin dosing can lead to life-threatening abnormal glucose levels, increasing the risk of retinopathy, neuropathy, and nephropathy. Here, we present a novel learning algorithm that uses Q-learning to track optimal CRs and uses nearest-neighbors based Q-learning to track optimal CFs. The learning algorithm was compared with the run-to-run algorithm A and the run-to-run algorithm B, both proposed in the literature, over an 8-week period using a validated simulator with a realistic scenario created with suboptimal CRs and CFs values, carbohydrate counting errors, and random meals sizes at random ingestion times. From Week 1 to Week 8, the learning algorithm increased the percentage of time spent in target glucose range (4.0 to 10.0 mmol/L) from 51 % to 64 % compared to 61 % and 58 % with the run-to-run algorithm A and the run-to-run algorithm B, respectively. The learning algorithm decreased the percentage of time spent below 4.0 mmol/L from 9 % to 1.9 % compared to 3.4 % and 2.3 % with the run-to-run algorithm A and the run-to-run algorithm B, respectively. The algorithm was also assessed by comparing its recommendations with (i) the endocrinologist's recommendations on two type 1 diabetes individuals over a 16-week period and (ii) real-world individuals' therapy settings changes of 23 individuals (19 type 2 and 4 type 1) over an 8-week period using the commercial Bigfoot Unity Diabetes Management System. The full agreements (i) were 89 % and 76 % for CRs and CFs for the type 1 diabetes individuals and (ii) was 62 % for mealtime doses for the individuals on the commercial Bigfoot system. Therefore, the proposed algorithm has the potential to improve glucose control in individuals with type 1 and type 2 diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文远望完成签到,获得积分10
刚刚
3秒前
扣子完成签到 ,获得积分10
3秒前
9秒前
了0完成签到 ,获得积分10
9秒前
执着可仁完成签到 ,获得积分10
9秒前
洁净的访文完成签到 ,获得积分10
16秒前
宋相甫发布了新的文献求助10
16秒前
季刘杰完成签到 ,获得积分10
22秒前
老阎应助YuLu采纳,获得30
22秒前
xingyi完成签到,获得积分10
23秒前
宋相甫完成签到,获得积分10
24秒前
Criminology34应助chenpaul1983采纳,获得10
24秒前
zhang完成签到,获得积分10
30秒前
31秒前
满意的念柏完成签到,获得积分10
32秒前
Lemon_ice发布了新的文献求助10
35秒前
howudoin完成签到,获得积分10
36秒前
可爱的紫菜完成签到 ,获得积分10
37秒前
小杨完成签到,获得积分10
38秒前
Lemon_ice完成签到,获得积分10
39秒前
逗号完成签到,获得积分10
41秒前
43秒前
Haibrar完成签到 ,获得积分10
45秒前
郭磊完成签到 ,获得积分10
47秒前
晚意完成签到 ,获得积分10
48秒前
自觉的凛发布了新的文献求助10
50秒前
YuLu完成签到 ,获得积分10
52秒前
米博士完成签到,获得积分10
53秒前
自觉的凛完成签到,获得积分10
56秒前
林美芳完成签到 ,获得积分10
1分钟前
强壮的美女完成签到,获得积分10
1分钟前
nusiew完成签到,获得积分10
1分钟前
魁梧的觅松完成签到 ,获得积分10
1分钟前
闪闪蜜粉完成签到 ,获得积分10
1分钟前
t铁核桃1985完成签到 ,获得积分10
1分钟前
TheGreat完成签到,获得积分10
1分钟前
1分钟前
1分钟前
闻巷雨完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212175
求助须知:如何正确求助?哪些是违规求助? 4388435
关于积分的说明 13663849
捐赠科研通 4248864
什么是DOI,文献DOI怎么找? 2331208
邀请新用户注册赠送积分活动 1328931
关于科研通互助平台的介绍 1282248