清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Advanced decision support system for individuals with diabetes on multiple daily injections therapy using reinforcement learning and nearest-neighbors: In-silico and clinical results

糖尿病 算法 计算机科学 强化学习 医学 胰岛素 机器学习 人工智能 内科学 内分泌学
作者
Adnan Jafar,Melissa‐Rosina Pasqua,B. J. Olson,Ahmad Haidar
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:148: 102749-102749 被引量:5
标识
DOI:10.1016/j.artmed.2023.102749
摘要

Many individuals with diabetes on multiple daily insulin injections therapy use carbohydrate ratios (CRs) and correction factors (CFs) to determine mealtime and correction insulin boluses. The CRs and CFs vary over time due to physiological changes in individuals' response to insulin. Errors in insulin dosing can lead to life-threatening abnormal glucose levels, increasing the risk of retinopathy, neuropathy, and nephropathy. Here, we present a novel learning algorithm that uses Q-learning to track optimal CRs and uses nearest-neighbors based Q-learning to track optimal CFs. The learning algorithm was compared with the run-to-run algorithm A and the run-to-run algorithm B, both proposed in the literature, over an 8-week period using a validated simulator with a realistic scenario created with suboptimal CRs and CFs values, carbohydrate counting errors, and random meals sizes at random ingestion times. From Week 1 to Week 8, the learning algorithm increased the percentage of time spent in target glucose range (4.0 to 10.0 mmol/L) from 51 % to 64 % compared to 61 % and 58 % with the run-to-run algorithm A and the run-to-run algorithm B, respectively. The learning algorithm decreased the percentage of time spent below 4.0 mmol/L from 9 % to 1.9 % compared to 3.4 % and 2.3 % with the run-to-run algorithm A and the run-to-run algorithm B, respectively. The algorithm was also assessed by comparing its recommendations with (i) the endocrinologist's recommendations on two type 1 diabetes individuals over a 16-week period and (ii) real-world individuals' therapy settings changes of 23 individuals (19 type 2 and 4 type 1) over an 8-week period using the commercial Bigfoot Unity Diabetes Management System. The full agreements (i) were 89 % and 76 % for CRs and CFs for the type 1 diabetes individuals and (ii) was 62 % for mealtime doses for the individuals on the commercial Bigfoot system. Therefore, the proposed algorithm has the potential to improve glucose control in individuals with type 1 and type 2 diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36秒前
矢思然完成签到,获得积分10
1分钟前
2分钟前
2分钟前
ontheway完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ontheway发布了新的文献求助10
2分钟前
激动的似狮完成签到,获得积分0
2分钟前
852应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
tt完成签到,获得积分10
3分钟前
3分钟前
疯狂的凡梦完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
默默善愁发布了新的文献求助10
4分钟前
Orange应助默默善愁采纳,获得10
5分钟前
5分钟前
爱思考的小笨笨完成签到,获得积分10
5分钟前
英俊的铭应助科研通管家采纳,获得50
6分钟前
在水一方应助科研通管家采纳,获得10
6分钟前
橙色小瓶子完成签到,获得积分10
6分钟前
zh完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
开朗嘉熙完成签到 ,获得积分10
7分钟前
Paris完成签到 ,获得积分10
7分钟前
7分钟前
鲁成危完成签到,获得积分10
8分钟前
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
斯文败类应助科研通管家采纳,获得10
8分钟前
9分钟前
哭泣灯泡完成签到,获得积分10
9分钟前
每天都在掉头发完成签到,获得积分10
9分钟前
9分钟前
drhwang完成签到,获得积分10
9分钟前
9分钟前
keke发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617142
求助须知:如何正确求助?哪些是违规求助? 4701486
关于积分的说明 14913769
捐赠科研通 4750180
什么是DOI,文献DOI怎么找? 2549320
邀请新用户注册赠送积分活动 1512350
关于科研通互助平台的介绍 1474091