Response of ecosystem water-use efficiency to global vegetation greening

绿化 植被(病理学) 环境科学 生态系统 环境资源管理 生态系统服务 生态学 医学 病理 生物
作者
Zeyin Hu,Quanhou Dai,Huyue Li,Youjin Yan,You Zhang,Yang Xue,Xinyin Zhang,Hong Zhou,Yiwen Yao
出处
期刊:Catena [Elsevier]
卷期号:239: 107952-107952 被引量:9
标识
DOI:10.1016/j.catena.2024.107952
摘要

Global vegetation has been greening during the past two decades. However, relatively less is known concerning the change of carbon–water cycle coupling in response to vegetation greening. A key indicator that can characterize this coupling is water-use efficiency (WUE) of ecosystems. Therefore, we explored the impact of global vegetation greening on ecosystem WUE using Theil-Sen trend analysis, Mann-Kendall (M−K) test, stepwise regression and Lindeman Merenda Gold model (LMG) model based on the remote sensing data from 1982 to 2018. Our results showed that global vegetation greening had a positive effect on the gross primary productivity (GPP), evapotranspiration (ET) and WUE during the past thirty years. The WUE in 70 % of these vegetation greening areas, including India, China, Russia, Japan, North Korea, Europe and North America, was increased, and the WUE was increased by 0.002 g C kg H2O yr−1, which was twice as much as that of the global vegetation cover areas. Results of stepwise regression analysis showed that vegetation greening contributed 80 % of the changes in WUE, much higher than the contribution of the climate factors. GPP contributes approximately 81 % to the changes in WUE as a result of vegetation greening. In addition, we also found that, in the greening areas around the world, leaf area index (LAI) explained 80 % of the changes in WUE, and that vegetation has a positive effect WUE. Therefore, the WUE should be considered in the design of ecological restoration programs in the future, and vegetation of low water consumption would be favored to realize sustainable ecosystem services and regional development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
genoy完成签到,获得积分10
刚刚
乔乔完成签到,获得积分10
刚刚
吾问无为谓完成签到,获得积分20
2秒前
2秒前
2秒前
花椒泡茶完成签到,获得积分10
2秒前
2秒前
小马哥完成签到,获得积分20
2秒前
2秒前
3秒前
mkW完成签到,获得积分10
3秒前
读研好难完成签到,获得积分10
3秒前
跳跃的罡发布了新的文献求助10
3秒前
论文侠完成签到 ,获得积分10
3秒前
神勇的雅香应助梓榆采纳,获得10
3秒前
3秒前
深情安青应助Mlwwq采纳,获得10
3秒前
脑洞疼应助耿强采纳,获得10
4秒前
江梦松完成签到,获得积分10
4秒前
4秒前
4秒前
liu发布了新的文献求助10
5秒前
6秒前
6秒前
水獭发布了新的文献求助10
7秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
7秒前
7秒前
LZZ发布了新的文献求助10
7秒前
昵称发布了新的文献求助10
8秒前
认真的一刀发布了新的文献求助200
8秒前
Lin发布了新的文献求助10
8秒前
杨燕华完成签到,获得积分10
8秒前
pxy完成签到,获得积分10
9秒前
10秒前
10秒前
...完成签到,获得积分10
10秒前
tfsn20完成签到,获得积分0
10秒前
程程完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762