Exploring varying color spaces through representative forgery learning to improve deepfake detection

计算机科学 RGB颜色模型 稳健性(进化) 人工智能 色空间 RGB颜色空间 深度学习 一般化 模式识别(心理学) 机器学习 彩色图像 图像处理 图像(数学) 数学 数学分析 基因 生物化学 化学
作者
Muhammad Ahmad Amin,Yongjian Hu,Guan Yu,Muhammad Zain Amin
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:147: 104426-104426
标识
DOI:10.1016/j.dsp.2024.104426
摘要

In the digital age, the rise of deepfake technology has brought unprecedented challenges to multimedia content authentication. The existing deepfake detection methods generally perform well in known settings. However, generalization and robustness are still challenging tasks. Observing that most conventional methods adopt the RGB color space, we introduce a novel deepfake detection approach by utilizing multiple color spaces to enhance the identification of deepfakes. Overall, our proposed detection framework comprises two primary stages, i.e., representative forgery learning through multi-color space reasoning and the color spaces-based forgery detection network (FDN). The representative forgery learning task is realized in succession through the manipulation cue boosting network (MCBN), color space transformations, and the forgery highlighting network (FHN). MCBN improves the feature representation, alternate color spaces provide distinctive advantages over traditional RGB color space, while FHN plays an auxiliary role, where it not only mines the texture inconsistency but also points out high-level semantic forgery clues, aiding in the robustness ability of FDN to discern subtle alterations in digital imagery accurately. Through rigorous evaluation on the benchmark datasets, including the FaceForensics++, DFDC, and CelebDF datasets, our proposed approach exhibits promising results in identifying forged multimedia content across varying color representations, outperforming the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怀玉完成签到,获得积分10
3秒前
4秒前
云栖完成签到,获得积分10
4秒前
哑铃完成签到,获得积分10
5秒前
夜白完成签到,获得积分0
9秒前
任小萱发布了新的文献求助10
9秒前
任虎完成签到,获得积分10
10秒前
16秒前
cc应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得30
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
达雨应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得80
16秒前
Lucas应助科研通管家采纳,获得10
17秒前
17秒前
勤恳雅莉应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
勤恳雅莉应助科研通管家采纳,获得10
17秒前
达雨应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
VDC应助科研通管家采纳,获得30
17秒前
彭于晏应助chengzhiheng采纳,获得30
18秒前
謃河鷺起完成签到,获得积分10
23秒前
24秒前
王珺完成签到 ,获得积分10
25秒前
任小萱完成签到,获得积分10
25秒前
科研废物完成签到,获得积分10
32秒前
Antonio完成签到 ,获得积分0
33秒前
33秒前
33秒前
nonosense完成签到,获得积分10
34秒前
CodeCraft应助鹏鹏爱科研采纳,获得10
35秒前
36秒前
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560794
求助须知:如何正确求助?哪些是违规求助? 4646134
关于积分的说明 14677609
捐赠科研通 4587235
什么是DOI,文献DOI怎么找? 2516918
邀请新用户注册赠送积分活动 1490339
关于科研通互助平台的介绍 1461160