A new cloud-based method for composition of healthcare services using deep reinforcement learning and Kalman filtering

云计算 计算机科学 可扩展性 服务计算 医疗保健 人气 强化学习 能源消耗 服务(商务) 卡尔曼滤波器 可靠性(半导体) 风险分析(工程) 人工智能 Web服务 业务 工程类 万维网 数据库 营销 操作系统 心理学 社会心理学 功率(物理) 物理 量子力学 电气工程 经济 经济增长
作者
Chongzhou Zhong,Mehdi Darbandi,Mohammad Hossein Moattar,Ahmad Latifian,Mehdi Hosseinzadeh,Nima Jafari Navimipour
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108152-108152
标识
DOI:10.1016/j.compbiomed.2024.108152
摘要

Healthcare has significantly contributed to the well-being of individuals around the globe; nevertheless, further benefits could be derived from a more streamlined healthcare system without incurring additional costs. Recently, the main attributes of cloud computing, such as on-demand service, high scalability, and virtualization, have brought many benefits across many areas, especially in medical services. It is considered an important element in healthcare services, enhancing the performance and efficacy of the services. The current state of the healthcare industry requires the supply of healthcare products and services, increasing its viability for everyone involved. Developing new approaches for discovering and selecting healthcare services in the cloud has become more critical due to the rising popularity of these kinds of services. As a result of the diverse array of healthcare services, service composition enables the execution of intricate operations by integrating multiple services' functionalities into a single procedure. However, many methods in this field encounter several issues, such as high energy consumption, cost, and response time. This article introduces a novel layered method for selecting and evaluating healthcare services to find optimal service selection and composition solutions based on Deep Reinforcement Learning (Deep RL), Kalman filtering, and repeated training, addressing the aforementioned issues. The results revealed that the proposed method has achieved acceptable results in terms of availability, reliability, energy consumption, and response time when compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七发布了新的文献求助10
1秒前
fsdf完成签到,获得积分10
1秒前
善学以致用应助Zhang采纳,获得10
1秒前
caicaikan完成签到,获得积分10
1秒前
bu完成签到,获得积分10
1秒前
超级冰露完成签到,获得积分10
1秒前
2秒前
小李呀完成签到,获得积分10
2秒前
你莫停完成签到,获得积分10
2秒前
我爱科研完成签到,获得积分10
2秒前
榛苓完成签到,获得积分10
2秒前
赵安琪发布了新的文献求助10
3秒前
渣渣凡完成签到,获得积分10
3秒前
Jasper应助早川木槿采纳,获得10
4秒前
科研通AI2S应助xuex1采纳,获得10
7秒前
万能图书馆应助独特斩采纳,获得10
7秒前
万能图书馆应助陈永伟采纳,获得10
7秒前
曼仔完成签到,获得积分10
7秒前
夕风残照完成签到,获得积分10
7秒前
斯文败类应助小李呀采纳,获得10
7秒前
务实一斩完成签到 ,获得积分10
7秒前
姜姜发布了新的文献求助10
9秒前
11秒前
丰知然应助大头头不大采纳,获得10
11秒前
脑洞疼应助大头头不大采纳,获得30
11秒前
在水一方应助大头头不大采纳,获得10
11秒前
9xixixixixixixi完成签到,获得积分10
12秒前
害羞向日葵完成签到 ,获得积分10
12秒前
canyonone完成签到,获得积分20
13秒前
baibaili完成签到,获得积分10
14秒前
14秒前
slk完成签到,获得积分20
14秒前
15秒前
aaaa发布了新的文献求助10
16秒前
16秒前
18秒前
赵安琪完成签到,获得积分20
18秒前
18秒前
阿利呀发布了新的文献求助20
19秒前
科研通AI2S应助XunlongJi采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397