已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integration of spectral and image features of hyperspectral imaging for quantitative determination of protein and starch contents in maize kernels

高光谱成像 淀粉 光谱成像 计算机视觉 人工智能 化学成像 遥感 模式识别(心理学) 计算机科学 环境科学 生物系统 化学 生物 地质学 食品科学
作者
Mengmeng Qiao,Tao Cui,Guoyi Xia,Yang Xu,Yibo Li,Chenlong Fan,Shaoyun Han,Jiaqi Dong
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:218: 108718-108718 被引量:3
标识
DOI:10.1016/j.compag.2024.108718
摘要

Rapid and accurate detection of protein and starch contents is important to ensure maize quality. However, existing methods for rapidly detecting protein and starch contents often suffer from drying samples to improve accuracy but significantly increase the overall detection time. To bridge this research gap, this study aims to integrate spectral and image features of visible near-infrared hyperspectral imaging for rapid determination of protein and starch contents with high accuracy under the effect of water on maize kernels. First, the spectral information at 399.75–1005.80 nm, color (the first, second, and third-order moments of H, S, and V color channels), and texture (contrast, correlation, energy, homogeneity, and entropy) features data were extracted. Then, 40 prediction models, including various preprocessing methods and modeling algorithms, partial least squares regression (PLSR), support vector regression (SVR), and extreme learning machine (ELM), were established and compared. Furthermore, the characteristic wavelengths are selected by successive projection algorithm (SPA) and uninformative variables elimination (UVE), and further fused with color and texture features data to improve model accuracy. The results showed that the best prediction models of both protein and starch contents were built based on fusion data. The standard normal transformation (SNV)-SPA-Color-ELM-Protein model and multiplicative scatter correction (MSC)-UVE-Texture-ELM-Starch model were optimal, which can achieve rapid and accurate detection in maize kernels under the effect of water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷歌完成签到,获得积分10
2秒前
3秒前
5秒前
巨噬细胞A完成签到,获得积分10
6秒前
我是老大应助ll采纳,获得10
8秒前
缓慢访烟完成签到 ,获得积分10
9秒前
淳于惜雪完成签到,获得积分10
9秒前
9秒前
Xdz发布了新的文献求助10
10秒前
痞先森完成签到,获得积分10
11秒前
爆米花应助花花懿懿采纳,获得10
13秒前
痞先森发布了新的文献求助10
15秒前
姜忆霜完成签到 ,获得积分10
16秒前
活力的采枫完成签到 ,获得积分10
20秒前
shang完成签到,获得积分20
21秒前
21秒前
22秒前
英俊的铭应助重要谷冬采纳,获得10
24秒前
25秒前
宜醉宜游宜睡应助qwerty123采纳,获得10
26秒前
打打应助Xdz采纳,获得10
27秒前
初闻发布了新的文献求助10
27秒前
领导范儿应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
852应助科研通管家采纳,获得10
29秒前
xiaoming应助科研通管家采纳,获得10
29秒前
大个应助科研通管家采纳,获得20
29秒前
29秒前
30秒前
huhu发布了新的文献求助10
30秒前
完美世界应助采采采纳,获得10
31秒前
32秒前
shang发布了新的文献求助10
35秒前
重要谷冬发布了新的文献求助10
36秒前
37秒前
41秒前
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136894
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783497
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299488
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954