Performance evaluation of an occupant metabolic rate estimation algorithm using activity classification and object detection models

算法 计算机科学 估计 对象(语法) 代谢活性 代谢率 人工智能 模式识别(心理学) 工程类 生物系统 生物 内分泌学 系统工程
作者
Ji Young Yun,Eun Ji Choi,Min Hee Chung,Kang Woo Bae,Jin Woo Moon
出处
期刊:Building and Environment [Elsevier]
卷期号:252: 111299-111299
标识
DOI:10.1016/j.buildenv.2024.111299
摘要

To create a comfortable indoor environment, the metabolic rate (MET), which affects the thermal sensation of occupants, needs to be reflected in real-time. Recently, methods employing computer vision techniques classify activities based on the pose of the body in images. However, these methods face challenges in determining the MET depending on the objects used, even with the same pose. Therefore, the objective of this study is to develop a MET estimation algorithm that can estimate various METs by integrating a pose-based activity classification model and an object detection model. To achieve this, an object detection model capable of detecting and classifying six regularly used objects indoors was developed, and a performance evaluation was conducted. The MET estimation algorithm was assessed through the implementation of a thermal control system, validating its applicability in experimental settings. As a result, the object detection model exhibited a real-time classification accuracy of 89%. Additionally, when evaluating the mode value over 15-s intervals, it demonstrated a classification accuracy of 100%. The algorithm exhibited a real-time estimation accuracy of 83% for the six METs and examining the mode value for 15-s intervals, it demonstrated a classification accuracy of 99%. This study thus confirmed the control capability of the proposed MET estimation algorithm and its potential for the estimation of various METs. The developed method can be used for the real-time estimation of occupant thermal comfort in indoor comfort-based control systems, contributing to the realization of a comfortable environment for occupants that protects their well-being.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助露亮采纳,获得10
1秒前
灵巧冰绿发布了新的文献求助20
1秒前
清鱼坊发布了新的文献求助10
2秒前
2秒前
科芒完成签到,获得积分10
2秒前
louis完成签到,获得积分10
2秒前
馒头发布了新的文献求助10
2秒前
YBR发布了新的文献求助10
2秒前
3秒前
xiaofeizhu完成签到,获得积分10
3秒前
summor完成签到,获得积分10
3秒前
小马甲应助迅速冷霜采纳,获得10
3秒前
张张Zzz发布了新的文献求助10
3秒前
冲锋猛男林完成签到,获得积分10
4秒前
Eileen发布了新的文献求助10
4秒前
4秒前
maoamo2024发布了新的文献求助10
4秒前
天天快乐应助FQma123采纳,获得10
4秒前
clean完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
妍妈关注了科研通微信公众号
6秒前
grande完成签到,获得积分10
6秒前
薄荷糖发布了新的文献求助30
6秒前
完美世界应助端庄千青采纳,获得10
7秒前
7秒前
后夜完成签到,获得积分10
7秒前
专注的芷蕾完成签到,获得积分10
8秒前
一滴水完成签到,获得积分10
8秒前
mm发布了新的文献求助10
8秒前
smottom应助zhang采纳,获得10
9秒前
9秒前
9秒前
陈AQ完成签到,获得积分10
9秒前
9秒前
李健应助Freekor采纳,获得10
10秒前
深情安青应助maoamo2024采纳,获得10
11秒前
11秒前
CodeCraft应助maoamo2024采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577