Performance evaluation of an occupant metabolic rate estimation algorithm using activity classification and object detection models

算法 计算机科学 估计 对象(语法) 代谢活性 代谢率 人工智能 模式识别(心理学) 工程类 生物系统 生物 内分泌学 系统工程
作者
Ji Young Yun,Eun Ji Choi,Min Hee Chung,Kang Woo Bae,Jin Woo Moon
出处
期刊:Building and Environment [Elsevier]
卷期号:252: 111299-111299
标识
DOI:10.1016/j.buildenv.2024.111299
摘要

To create a comfortable indoor environment, the metabolic rate (MET), which affects the thermal sensation of occupants, needs to be reflected in real-time. Recently, methods employing computer vision techniques classify activities based on the pose of the body in images. However, these methods face challenges in determining the MET depending on the objects used, even with the same pose. Therefore, the objective of this study is to develop a MET estimation algorithm that can estimate various METs by integrating a pose-based activity classification model and an object detection model. To achieve this, an object detection model capable of detecting and classifying six regularly used objects indoors was developed, and a performance evaluation was conducted. The MET estimation algorithm was assessed through the implementation of a thermal control system, validating its applicability in experimental settings. As a result, the object detection model exhibited a real-time classification accuracy of 89%. Additionally, when evaluating the mode value over 15-s intervals, it demonstrated a classification accuracy of 100%. The algorithm exhibited a real-time estimation accuracy of 83% for the six METs and examining the mode value for 15-s intervals, it demonstrated a classification accuracy of 99%. This study thus confirmed the control capability of the proposed MET estimation algorithm and its potential for the estimation of various METs. The developed method can be used for the real-time estimation of occupant thermal comfort in indoor comfort-based control systems, contributing to the realization of a comfortable environment for occupants that protects their well-being.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxxz发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
包容春天发布了新的文献求助10
1秒前
2秒前
ding应助神勇绮烟采纳,获得10
2秒前
AyraN完成签到,获得积分10
2秒前
哈哈哈发布了新的文献求助10
2秒前
2秒前
hhh完成签到,获得积分10
2秒前
Zzz发布了新的文献求助20
3秒前
gudujian870928完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助ira采纳,获得10
3秒前
一念之间发布了新的文献求助10
3秒前
君叁叁发布了新的文献求助10
4秒前
Akun发布了新的文献求助20
4秒前
4秒前
4秒前
123lura完成签到,获得积分10
4秒前
所所应助科研人采纳,获得10
5秒前
Ava应助lily采纳,获得10
5秒前
天涯过客完成签到,获得积分10
5秒前
阿松大发布了新的文献求助10
5秒前
情怀应助张锐斌采纳,获得10
6秒前
6秒前
正直海之完成签到,获得积分10
6秒前
FashionBoy应助c14在读文献采纳,获得10
6秒前
领导范儿应助LXH采纳,获得10
7秒前
totoro完成签到,获得积分10
7秒前
赘婿应助糊涂的砖头采纳,获得10
7秒前
ZMZ完成签到,获得积分10
7秒前
一念之间完成签到,获得积分10
8秒前
影zi发布了新的文献求助10
8秒前
Jaden发布了新的文献求助10
8秒前
伯仲之间发布了新的文献求助10
8秒前
8秒前
斯文败类应助tinatian270采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017