Performance evaluation of an occupant metabolic rate estimation algorithm using activity classification and object detection models

算法 计算机科学 估计 对象(语法) 代谢活性 代谢率 人工智能 模式识别(心理学) 工程类 生物系统 生物 系统工程 内分泌学
作者
Ji Young Yun,Eun Ji Choi,Min Hee Chung,Kang Woo Bae,Jin Woo Moon
出处
期刊:Building and Environment [Elsevier]
卷期号:252: 111299-111299
标识
DOI:10.1016/j.buildenv.2024.111299
摘要

To create a comfortable indoor environment, the metabolic rate (MET), which affects the thermal sensation of occupants, needs to be reflected in real-time. Recently, methods employing computer vision techniques classify activities based on the pose of the body in images. However, these methods face challenges in determining the MET depending on the objects used, even with the same pose. Therefore, the objective of this study is to develop a MET estimation algorithm that can estimate various METs by integrating a pose-based activity classification model and an object detection model. To achieve this, an object detection model capable of detecting and classifying six regularly used objects indoors was developed, and a performance evaluation was conducted. The MET estimation algorithm was assessed through the implementation of a thermal control system, validating its applicability in experimental settings. As a result, the object detection model exhibited a real-time classification accuracy of 89%. Additionally, when evaluating the mode value over 15-s intervals, it demonstrated a classification accuracy of 100%. The algorithm exhibited a real-time estimation accuracy of 83% for the six METs and examining the mode value for 15-s intervals, it demonstrated a classification accuracy of 99%. This study thus confirmed the control capability of the proposed MET estimation algorithm and its potential for the estimation of various METs. The developed method can be used for the real-time estimation of occupant thermal comfort in indoor comfort-based control systems, contributing to the realization of a comfortable environment for occupants that protects their well-being.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ddd发布了新的文献求助10
1秒前
大尾猫完成签到,获得积分10
2秒前
2秒前
小郑好好搞科研完成签到,获得积分10
3秒前
xf完成签到 ,获得积分10
3秒前
梁大海完成签到,获得积分10
3秒前
永远爱刻晴完成签到 ,获得积分10
4秒前
斯文败类应助shuo采纳,获得10
5秒前
包容沛芹完成签到,获得积分10
5秒前
化学完成签到,获得积分10
5秒前
mimi发布了新的文献求助10
6秒前
Richardisme发布了新的文献求助10
6秒前
6秒前
523完成签到,获得积分10
7秒前
7秒前
7秒前
陈文文完成签到 ,获得积分10
8秒前
852应助爱右边采纳,获得10
8秒前
Cc完成签到,获得积分10
8秒前
彭于晏应助谷贝贝采纳,获得10
9秒前
齐安客完成签到,获得积分10
9秒前
如意伟诚完成签到,获得积分20
9秒前
lxk55555发布了新的文献求助10
10秒前
CipherSage应助a623662980采纳,获得10
11秒前
bkagyin应助科研小菜鸡采纳,获得10
11秒前
小蘑菇应助科研小菜鸡采纳,获得10
11秒前
11秒前
小王小王发布了新的文献求助10
11秒前
NexusExplorer应助科研小菜鸡采纳,获得10
11秒前
完美世界应助科研小菜鸡采纳,获得10
11秒前
共享精神应助科研小菜鸡采纳,获得10
11秒前
科研通AI2S应助科研小菜鸡采纳,获得10
11秒前
科研通AI2S应助科研小菜鸡采纳,获得10
12秒前
完美世界应助科研小菜鸡采纳,获得10
12秒前
Jasper应助科研小菜鸡采纳,获得10
12秒前
钮文昊完成签到,获得积分10
12秒前
12秒前
13秒前
互助遵法尚德应助sue采纳,获得10
14秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147764
求助须知:如何正确求助?哪些是违规求助? 2798817
关于积分的说明 7831609
捐赠科研通 2455685
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587