Performance evaluation of an occupant metabolic rate estimation algorithm using activity classification and object detection models

算法 计算机科学 估计 对象(语法) 代谢活性 代谢率 人工智能 模式识别(心理学) 工程类 生物系统 生物 内分泌学 系统工程
作者
Ji Young Yun,Eun Ji Choi,Min Hee Chung,Kang Woo Bae,Jin Woo Moon
出处
期刊:Building and Environment [Elsevier]
卷期号:252: 111299-111299
标识
DOI:10.1016/j.buildenv.2024.111299
摘要

To create a comfortable indoor environment, the metabolic rate (MET), which affects the thermal sensation of occupants, needs to be reflected in real-time. Recently, methods employing computer vision techniques classify activities based on the pose of the body in images. However, these methods face challenges in determining the MET depending on the objects used, even with the same pose. Therefore, the objective of this study is to develop a MET estimation algorithm that can estimate various METs by integrating a pose-based activity classification model and an object detection model. To achieve this, an object detection model capable of detecting and classifying six regularly used objects indoors was developed, and a performance evaluation was conducted. The MET estimation algorithm was assessed through the implementation of a thermal control system, validating its applicability in experimental settings. As a result, the object detection model exhibited a real-time classification accuracy of 89%. Additionally, when evaluating the mode value over 15-s intervals, it demonstrated a classification accuracy of 100%. The algorithm exhibited a real-time estimation accuracy of 83% for the six METs and examining the mode value for 15-s intervals, it demonstrated a classification accuracy of 99%. This study thus confirmed the control capability of the proposed MET estimation algorithm and its potential for the estimation of various METs. The developed method can be used for the real-time estimation of occupant thermal comfort in indoor comfort-based control systems, contributing to the realization of a comfortable environment for occupants that protects their well-being.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研人X完成签到,获得积分10
2秒前
koui完成签到 ,获得积分10
3秒前
韶华若锦完成签到 ,获得积分10
4秒前
刘培恒发布了新的文献求助30
4秒前
CHENGJIAO完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
5秒前
man完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
8秒前
8秒前
多情山蝶发布了新的文献求助30
8秒前
czz发布了新的文献求助10
9秒前
科研通AI6.1应助赵卿采纳,获得10
9秒前
杨德帅发布了新的文献求助10
11秒前
11秒前
小福fufu完成签到,获得积分10
11秒前
苏yj发布了新的文献求助10
12秒前
sylinmm完成签到,获得积分10
12秒前
shufessm完成签到,获得积分0
12秒前
13秒前
ng9jR2发布了新的文献求助10
13秒前
Meng发布了新的文献求助10
13秒前
CodeCraft应助杨德帅采纳,获得20
14秒前
14秒前
脑洞疼应助谨慎的寒松采纳,获得10
15秒前
汉堡包应助谨慎的寒松采纳,获得10
15秒前
16秒前
17秒前
17秒前
科研通AI6.1应助文献狗采纳,获得10
17秒前
冷艳忆翠发布了新的文献求助10
18秒前
Return完成签到,获得积分10
18秒前
董咚咚发布了新的文献求助10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
lllxxx完成签到,获得积分10
22秒前
NIWEN发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736993
求助须知:如何正确求助?哪些是违规求助? 5369908
关于积分的说明 15334507
捐赠科研通 4880710
什么是DOI,文献DOI怎么找? 2622987
邀请新用户注册赠送积分活动 1571843
关于科研通互助平台的介绍 1528696