Performance evaluation of an occupant metabolic rate estimation algorithm using activity classification and object detection models

算法 计算机科学 估计 对象(语法) 代谢活性 代谢率 人工智能 模式识别(心理学) 工程类 生物系统 生物 内分泌学 系统工程
作者
Ji Young Yun,Eun Ji Choi,Min Hee Chung,Kang Woo Bae,Jin Woo Moon
出处
期刊:Building and Environment [Elsevier BV]
卷期号:252: 111299-111299
标识
DOI:10.1016/j.buildenv.2024.111299
摘要

To create a comfortable indoor environment, the metabolic rate (MET), which affects the thermal sensation of occupants, needs to be reflected in real-time. Recently, methods employing computer vision techniques classify activities based on the pose of the body in images. However, these methods face challenges in determining the MET depending on the objects used, even with the same pose. Therefore, the objective of this study is to develop a MET estimation algorithm that can estimate various METs by integrating a pose-based activity classification model and an object detection model. To achieve this, an object detection model capable of detecting and classifying six regularly used objects indoors was developed, and a performance evaluation was conducted. The MET estimation algorithm was assessed through the implementation of a thermal control system, validating its applicability in experimental settings. As a result, the object detection model exhibited a real-time classification accuracy of 89%. Additionally, when evaluating the mode value over 15-s intervals, it demonstrated a classification accuracy of 100%. The algorithm exhibited a real-time estimation accuracy of 83% for the six METs and examining the mode value for 15-s intervals, it demonstrated a classification accuracy of 99%. This study thus confirmed the control capability of the proposed MET estimation algorithm and its potential for the estimation of various METs. The developed method can be used for the real-time estimation of occupant thermal comfort in indoor comfort-based control systems, contributing to the realization of a comfortable environment for occupants that protects their well-being.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助大力半鬼采纳,获得10
1秒前
秉朔完成签到,获得积分10
1秒前
oldblack完成签到,获得积分10
2秒前
取昵称好难完成签到,获得积分10
2秒前
3秒前
orixero应助陈吕婷采纳,获得30
4秒前
Aliya完成签到 ,获得积分10
6秒前
SciGPT应助壮观的大船采纳,获得10
6秒前
单薄归尘完成签到 ,获得积分10
7秒前
Sherry完成签到,获得积分10
8秒前
星辰大海应助Dear77采纳,获得10
8秒前
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
tuanheqi应助科研通管家采纳,获得150
9秒前
852应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
dreamlightzy应助科研通管家采纳,获得10
9秒前
热心子轩应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
dpshi应助科研通管家采纳,获得10
10秒前
科研通AI6应助本质长青采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Jasper应助木佑采纳,获得10
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
宣邹应助科研通管家采纳,获得20
10秒前
李健应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
Ganfei完成签到,获得积分20
10秒前
无花果应助科研通管家采纳,获得10
10秒前
10秒前
丰富山灵完成签到 ,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
dreamlightzy应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920881
求助须知:如何正确求助?哪些是违规求助? 4192265
关于积分的说明 13020962
捐赠科研通 3963415
什么是DOI,文献DOI怎么找? 2172449
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099258