亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance evaluation of an occupant metabolic rate estimation algorithm using activity classification and object detection models

算法 计算机科学 估计 对象(语法) 代谢活性 代谢率 人工智能 模式识别(心理学) 工程类 生物系统 生物 内分泌学 系统工程
作者
Ji Young Yun,Eun Ji Choi,Min Hee Chung,Kang Woo Bae,Jin Woo Moon
出处
期刊:Building and Environment [Elsevier]
卷期号:252: 111299-111299
标识
DOI:10.1016/j.buildenv.2024.111299
摘要

To create a comfortable indoor environment, the metabolic rate (MET), which affects the thermal sensation of occupants, needs to be reflected in real-time. Recently, methods employing computer vision techniques classify activities based on the pose of the body in images. However, these methods face challenges in determining the MET depending on the objects used, even with the same pose. Therefore, the objective of this study is to develop a MET estimation algorithm that can estimate various METs by integrating a pose-based activity classification model and an object detection model. To achieve this, an object detection model capable of detecting and classifying six regularly used objects indoors was developed, and a performance evaluation was conducted. The MET estimation algorithm was assessed through the implementation of a thermal control system, validating its applicability in experimental settings. As a result, the object detection model exhibited a real-time classification accuracy of 89%. Additionally, when evaluating the mode value over 15-s intervals, it demonstrated a classification accuracy of 100%. The algorithm exhibited a real-time estimation accuracy of 83% for the six METs and examining the mode value for 15-s intervals, it demonstrated a classification accuracy of 99%. This study thus confirmed the control capability of the proposed MET estimation algorithm and its potential for the estimation of various METs. The developed method can be used for the real-time estimation of occupant thermal comfort in indoor comfort-based control systems, contributing to the realization of a comfortable environment for occupants that protects their well-being.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小艺发布了新的文献求助10
4秒前
桐桐应助白笙采纳,获得10
9秒前
wanci应助小艺采纳,获得10
13秒前
13秒前
脑洞疼应助jijiguo采纳,获得10
16秒前
CipherSage应助廷聿采纳,获得10
17秒前
21秒前
科研通AI6应助彦黄子孙采纳,获得10
23秒前
淡定的天问完成签到 ,获得积分10
26秒前
jijiguo发布了新的文献求助10
27秒前
28秒前
30秒前
甘楽发布了新的文献求助10
31秒前
看到就去签到完成签到,获得积分10
31秒前
共享精神应助jijiguo采纳,获得10
34秒前
甘楽完成签到,获得积分20
41秒前
25_1完成签到,获得积分10
41秒前
42秒前
43秒前
25_1发布了新的文献求助10
48秒前
芳华如梦发布了新的文献求助10
51秒前
Lynn完成签到,获得积分10
55秒前
风行域完成签到,获得积分10
55秒前
HOPKINSON发布了新的文献求助20
56秒前
章鱼完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
无题完成签到,获得积分10
1分钟前
夜夏完成签到,获得积分10
1分钟前
摩天轮完成签到 ,获得积分10
1分钟前
iShine完成签到 ,获得积分10
1分钟前
畅快怀寒完成签到 ,获得积分10
1分钟前
1分钟前
薛禾发布了新的文献求助10
1分钟前
乐乐应助芳华如梦采纳,获得10
1分钟前
1分钟前
breeze完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407659
求助须知:如何正确求助?哪些是违规求助? 4525171
关于积分的说明 14101365
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436551
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604