Heavy metals concentration in soils across the conterminous USA: Spatial prediction, model uncertainty, and influencing factors

环境科学 土壤水分 环境化学 降水 蒸散量 空间分布 水文学(农业) 土壤科学 地质学 化学 气象学 数学 统计 地理 生态学 生物 岩土工程
作者
Kabindra Adhikari,Marcelo Mancini,Zamir Libohova,Joshua Blackstock,H. Winzeler,Douglas R. Smith,Phillip Owens,Sérgio Henrique Godinho Silva,Nilton Curi
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:919: 170972-170972 被引量:14
标识
DOI:10.1016/j.scitotenv.2024.170972
摘要

Assessment and proper management of sites contaminated with heavy metals require precise information on the spatial distribution of these metals. This study aimed to predict and map the distribution of Cd, Cu, Ni, Pb, and Zn across the conterminous USA using point observations, environmental variables, and Histogram-based Gradient Boosting (HGB) modeling. Over 9180 surficial soil observations from the Soil Geochemistry Spatial Database (SGSD) (n = 1150), the Geochemical and Mineralogical Survey of Soils (GMSS) (n = 4857), and the Holmgren Dataset (HD) (n = 3400), and 28 covariates (100 m × 100 m grid) representing climate, topography, vegetation, soils, and anthropic activity were compiled. Model performance was evaluated on 20 % of the data not used in calibration using the coefficient of determination (R2), concordance correlation coefficient (ρc), and root mean square error (RMSE) indices. Uncertainty of predictions was calculated as the difference between the estimated 95 and 5 % quantiles provided by HGB. The model explained up to 50 % of the variance in the data with RMSE ranging between 0.16 (mg kg−1) for Cu and 23.4 (mg kg−1) for Zn, respectively. Likewise, ρc ranged between 0.55 (Cu) and 0.68 (Zn), respectively, and Zn had the highest R2 (0.50) among all predictions. We observed high Pb concentrations near urban areas. Peak concentrations of all studied metals were found in the Lower Mississippi River Valley. Cu, Ni, and Zn concentrations were higher on the West Coast; Cd concentrations were higher in the central USA. Clay, pH, potential evapotranspiration, temperature, and precipitation were among the model's top five important covariates for spatial predictions of heavy metals. The combined use of point observations and environmental covariates coupled with machine learning provided a reliable prediction of heavy metals distribution in the soils of the conterminous USA. The updated maps could support environmental assessments, monitoring, and decision-making with this methodology applicable to other soil databases, worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的王发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
tongitian完成签到,获得积分10
1秒前
1秒前
ky废品完成签到,获得积分10
1秒前
温暖成风完成签到,获得积分20
1秒前
愉快的语山应助午夜煎饼采纳,获得10
2秒前
浮游应助午夜煎饼采纳,获得10
2秒前
GGWEN完成签到,获得积分10
3秒前
英俊的铭应助黄文龙采纳,获得10
3秒前
3秒前
方梓言完成签到 ,获得积分20
4秒前
帅帅子发布了新的文献求助10
4秒前
Sandro完成签到,获得积分10
4秒前
谨慎的草丛完成签到,获得积分10
4秒前
4秒前
4秒前
奋斗幻姬完成签到,获得积分10
5秒前
玛卡巴卡发布了新的文献求助10
5秒前
tongitian发布了新的文献求助10
5秒前
lan发布了新的文献求助10
5秒前
5秒前
5秒前
Dawn完成签到,获得积分10
6秒前
6秒前
桐桐应助不知道起什么好采纳,获得10
7秒前
凯文发布了新的文献求助10
7秒前
勤恳的天亦应助zzzz采纳,获得20
7秒前
等乙天发布了新的文献求助10
7秒前
wangsy发布了新的文献求助10
8秒前
8秒前
Yan完成签到,获得积分10
9秒前
赘婿应助马宝强采纳,获得10
9秒前
细腻的青柏发布了新的文献求助200
9秒前
怕黑寻双完成签到,获得积分10
9秒前
10秒前
研友_VZG7GZ应助violet采纳,获得10
10秒前
10秒前
刘旭发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885327
求助须知:如何正确求助?哪些是违规求助? 4170219
关于积分的说明 12940950
捐赠科研通 3931044
什么是DOI,文献DOI怎么找? 2156822
邀请新用户注册赠送积分活动 1175208
关于科研通互助平台的介绍 1079841