A universal fabrication strategy for MOFs-driven vanadium-based composite for aqueous zinc ion batteries

材料科学 煅烧 氧化钒 化学工程 阴极 溶解 水溶液 复合数 无机化学 复合材料 冶金 化学 催化作用 工程类 物理化学 生物化学
作者
Xiuting Wu,Lian Luo,Shini Peng,Mengfan Zhang,Xin Li,Xuemei Meng,Caishuo Yin,Xianming Wu,Xianwen Wu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:482: 148836-148836 被引量:10
标识
DOI:10.1016/j.cej.2024.148836
摘要

The shortage of ideal cathode materials for aqueous zinc-ion batteries (AZIBs) hinders its further development of AZIBs due to metal ion dissolution and poor conductivity. Herein, the MOFs-driven vanadium-based composite as the cathode material is fabricated by simple hydrothermal method followed by annealing process. Typically, the vanadium source is added during the synthesis of MOFs and then it is calcined in an inert atmosphere to generate carbon-coated and metal ion pre-intercalated vanadium-based composites. Among them, the metal-ion is used as active sites and pre-intercalated in the vanadium oxide, which can alleviate the problem of structural collapse and improve the cycling stability. In addition, PVP is added as an assistance in the process of synthesizing MOFs, which can improve the dispersion of the material and restrain its agglomeration. Moreover, the surface of the vanadium oxide after calcination is also coated with nitrogen-doped carbon layer, which can adjust the electronic structure and surface properties of cathode materials, thereby enhancing the reaction kinetics and electrochemical performances. The Cu-MOF derived vanadium-based materials have abundant active sites and stable crystal structures, which can effectively alleviate the dissolution of vanadium-based materials. Because of the synergistic effects of Cu2+ pre-intercalated and nitrogen-doped carbon layers, CuVO electrode exhibits the excellent cycling stability with a higher discharge capacity of 158.6 mAh·g−1, and the capacity retention is up to 95.6 % even at a large current density of 5.0 A·g−1 after 4000 cycles. These intriguing designs will present a novel avenue for the construction of cathode with satisfactory electrochemical performance for AZIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
万能图书馆应助陈坚采纳,获得10
2秒前
余云开发布了新的文献求助30
2秒前
simu233完成签到,获得积分10
4秒前
科研通AI5应助科研后腿采纳,获得10
4秒前
5秒前
寒凌完成签到,获得积分10
7秒前
8秒前
妩媚发布了新的文献求助30
8秒前
在水一方应助韦恩采纳,获得10
8秒前
科研通AI5应助ZCLLLLL采纳,获得30
8秒前
情怀应助懦弱的咖啡豆采纳,获得10
8秒前
123abc应助兔子很颓采纳,获得20
9秒前
高屋建瓴发布了新的文献求助30
11秒前
凶狠的小兔子完成签到,获得积分10
11秒前
12秒前
萌萌哒完成签到,获得积分10
12秒前
李春霞发布了新的文献求助10
15秒前
17秒前
19秒前
hehe完成签到 ,获得积分10
22秒前
Ale发布了新的文献求助10
23秒前
ZCLLLLL完成签到,获得积分10
23秒前
eagle完成签到,获得积分10
23秒前
Gu完成签到,获得积分10
23秒前
深情安青应助Lws采纳,获得10
23秒前
今何在发布了新的文献求助10
24秒前
orange完成签到,获得积分10
25秒前
25秒前
安沁完成签到,获得积分10
25秒前
赘婿应助李春霞采纳,获得10
28秒前
ZCLLLLL发布了新的文献求助30
28秒前
eagle发布了新的文献求助10
29秒前
在水一方应助GuMingyang采纳,获得10
29秒前
科研通AI5应助Ale采纳,获得10
31秒前
huhao发布了新的文献求助10
31秒前
花花完成签到,获得积分10
31秒前
Grant完成签到 ,获得积分10
32秒前
35秒前
qqqq发布了新的文献求助10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672729
求助须知:如何正确求助?哪些是违规求助? 3228865
关于积分的说明 9782382
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610797
邀请新用户注册赠送积分活动 760740
科研通“疑难数据库(出版商)”最低求助积分说明 736199