Long-lived nanoparticle-embedded superhydrophobic membranes with rapid photocatalytic properties and continuous oil–water separation

光催化 材料科学 化学工程 废水 膜技术 水处理 纳米颗粒 饮用水净化 纳米技术 环境工程 化学 环境科学 有机化学 催化作用 工程类 生物化学
作者
Cai Long,Long Xiao,Yang Cai,Ximan Wang,Chenglong Li,Yongquan Qing,Yunli Zhao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:482: 148743-148743 被引量:17
标识
DOI:10.1016/j.cej.2024.148743
摘要

Superhydrophobic oil–water separation membranes have aroused widespread research interest as ideal candidates for treating oily wastewater. However, this type of membrane has difficulty simultaneously balancing the removal of organic matter in complex oily wastewater and achieving large-scale continuous oil–water separation. Herein, FeOOH/polydopamine/cotton (FPC) membranes with significant photocatalytic properties were prepared via the deposition of a complex formed by mineralizing polydopamine and Fe3+ on a cotton-based surface. Further modification with long-chain hexadecyltrimethoxysilane constructed multipurpose superhydrophobic hexadecyltrimethoxysilane/FeOOH/polydopamine/cotton (HFPC) membranes. The heterogeneous photo-Fenton system built from clipped FPC membranes rapidly degrades methyl blue pollutants with a 99.5 % degradation rate. Notably, HFPC membranes maintain exceptional superhydrophobicity even after enduring various severe damages, including 1000 sandpaper abrasions/hammer blows, 5 min running water impact, 12 h chemical immersion, 24 h UV aging, and 5 months of outdoor weathering. Additionally, HFPC membranes have separation efficiencies up to 99.5 % and continuous separation as long as 15 min, making them especially suitable for large-scale oil absorption. Long-lived nanoparticle-embedded membranes offer fast photocatalysis, long-lasting robustness, high separation efficiency and flux. Meanwhile, it has the advantages of large-scale continuous oil absorption, repeatability, low cost, and sustainability. This work merges rapid photocatalysis and efficient oil–water separation technologies, bringing a new breakthrough in expanding the multifunctional membrane field and opening a new door for the future development of related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Guochunbao发布了新的文献求助10
1秒前
熊猫发布了新的文献求助10
1秒前
王森完成签到,获得积分10
1秒前
1秒前
Ywffffff完成签到 ,获得积分10
2秒前
bb发布了新的文献求助10
3秒前
3秒前
科研废物发布了新的文献求助10
3秒前
ding应助从容甜瓜采纳,获得10
3秒前
5秒前
思思驳回了良辰应助
5秒前
6秒前
6秒前
qianmo完成签到 ,获得积分10
7秒前
田様应助bb采纳,获得10
8秒前
李大爷发布了新的文献求助10
10秒前
Autor完成签到,获得积分10
11秒前
11秒前
喜东东发布了新的文献求助10
11秒前
nav完成签到 ,获得积分10
11秒前
良辰应助TobyZhou采纳,获得10
11秒前
义气曼凝完成签到 ,获得积分10
12秒前
liu完成签到 ,获得积分10
13秒前
16秒前
Owen应助千千千千千千青采纳,获得10
18秒前
落寞芷巧关注了科研通微信公众号
18秒前
19秒前
碳烤小肥肠完成签到,获得积分10
19秒前
20秒前
wanci应助alice采纳,获得10
20秒前
20秒前
秀丽香露完成签到 ,获得积分10
21秒前
22秒前
悦耳碧萱发布了新的文献求助10
23秒前
24秒前
Akim应助515yanke采纳,获得10
24秒前
奶油兔子发布了新的文献求助10
25秒前
hhhh完成签到,获得积分10
25秒前
良辰应助TobyZhou采纳,获得10
26秒前
s33发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291884
求助须知:如何正确求助?哪些是违规求助? 2928343
关于积分的说明 8436625
捐赠科研通 2600302
什么是DOI,文献DOI怎么找? 1419018
科研通“疑难数据库(出版商)”最低求助积分说明 660203
邀请新用户注册赠送积分活动 642834